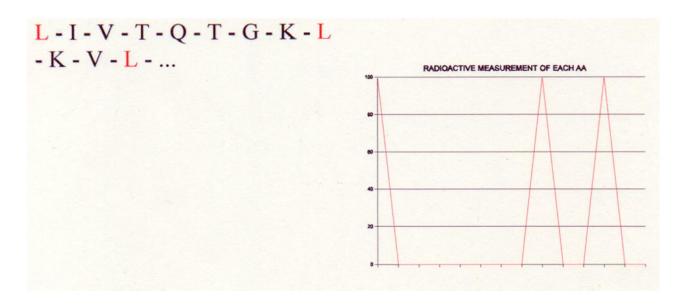
Edman Degradation

Cyclic degradation of peptides based on the reaction of phenylisothiocyanate with the free amino group of the *N*-terminal residue such that amino acids are removed one at a time and identified as their phenylthiohydantoin derivatives:

$$Ph-N=C=S + H_2N + H_2N + H_3N + H_2N + H_3N + H_3$$

P. Edman, Acta Chem. Scand. 4, 283 (1950).

MICROSEQUENCING


BASED ON CHEMICAL REACTION OF THE N-TERMINAL AMINO ACID (EDMAN DEGRADATION)

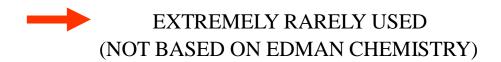
CAN BE PERFORMED MANUALLY (MANUAL SEQUENCING)
--USAGE OF SEVERAL SAMPLES AT THE SAME TIME
4 – 5 AMINO ACIDS PER DAY

THOUGH USUALLY PERFORMED BY AUTOMATED INSTRUMENTATION (=MICROSEQUENCING)

EXCEPTION: RADIOSEQUENCING

(RADIOSEQUENCING = SOME PARTICULAR AMINO ACIDS ARE RADIOACTIVELY LABELLED)

ADVANTAGES OF AUTOMATED SEQUENCING


EFICIENCY IS EXTREMELY HIGH (~ 97%)

(HOWEVER, ONLY APPROXIMATELY 60% OF THE TOTAL SAMPLE IS USED)

FAST SEQUENCING CYCLE TIMES (~ 20 - 30 MINUTES / AA)

** HIGH SENSITIVITY (LESS THAN 10 PMOL)

C-TERMINAL SEQUENCING

CHEMICAL OR ENZYMATICAL REACTION (CARBOXYPEPTIDASES)

BLOCKAGE OF THE N-TERMINAL AMINO ACID:

N-TERMINAL ENDING OF A PROTEIN IS OFTEN BLOCKED BY:

ACETYLATION
FORMYLATION
PYROLYZATION (GLUTAMATE)
NATURAL CYCLIZATION

ETC. SEVERAL BLOCKAGES KNOWN CAUSED IN VIVO AND/OR IN VITRO

TO GO AROUND

- DIGESTION OF THE BLOCKED PROTEIN
- ISOLATION OF THE PEPTIDES
 (SPECIFIC ISOLATION OF N- OR C- TERMINAL PEPTIDES)
- MASS SPECTROMETRIC ANALYSIS AND SEQUENCING
- NORMAL SEQUENCING OF THE ISOLATED PEPTIDES == IDENTIFICATION OF THE PROTEIN

PREPARING THE SAMPLE FOR MICROSEQUENCING

- HPLC (HIGH PERFORMANCE LIQUID CHROMATOGRAPHY)
- HPCE (HIGH PERFORMANCE CAPILLARY ELECTROPHORESIS)
- HPEC (HIGH PERFORMANCE ELECTROPHORESIS CHROMATOGRAPHY)
- PAGE (POLYACRYLAMIDE GEL ELECTROPHORESIS)

HPLC

MICROBORE CHROMATOGRAPHY (i.d. 2.1 - 1.1 mm)

GF, SAX, SCX, RP, HIC ...

(ADVANTAGES: FAST 20 - 30 MIN, HIGH SENSITIVITY)

HPCE

HIGH PERFORMANCE CAPILLARY ELECTROPHORESIS

HPEC

HIGH PERFORMANCE ELECTRO CHROMATOGRAPHY

PAGE

™ ELECTROBLOTTING

- THE BLOTS MAY BE STAINED WITH SEVERAL DYES
- **YOU MAY SEND A MEMBRANE BY MAIL**
- YOU MAY KEEP YOUR MEMBRANE FOR "EVER"
- YOU MAY PROCESS YOUR PROTEIN FROM THE MEMBRANE

PVDF CAN BE USED FOR SEQUENCING, NC NOT

AUTOMATED 2 - D, MICRO-GELS

GO SMALL, IT GIVES A HIGHER SENSITIVITY

♦ YOU GET MORE INFORMATION FROM LESS SAMPLE

LIMITATIONS FOR SEQUENCE ANALYSIS

SIZE OF THE PROTEIN (AD 100 kDa)

™ UNPURE SAMPLE

(BOTH RESULT IN HIGH BACKGROUND)

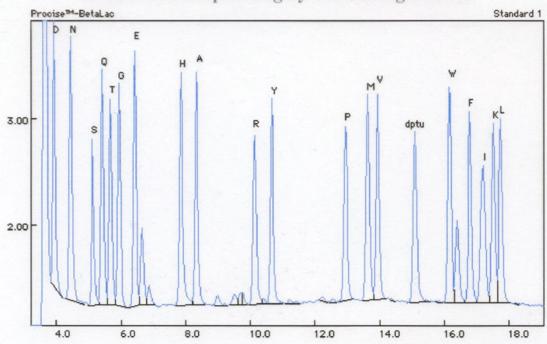
SPECIALITIES

USING SPECIFIC N - OR C - TERMINAL - BINDING MEMBRANES (SOLID PHASE SEQUENCING)

CLEAVAGE IN THE GEL

MICROSEQUENCING IS USUALLY DONE IN SPECIAL LABORATORIES FOR PROTEIN CHEMISTRY SERVICES

HERE IS ONE LINK AMONG OTHERS:

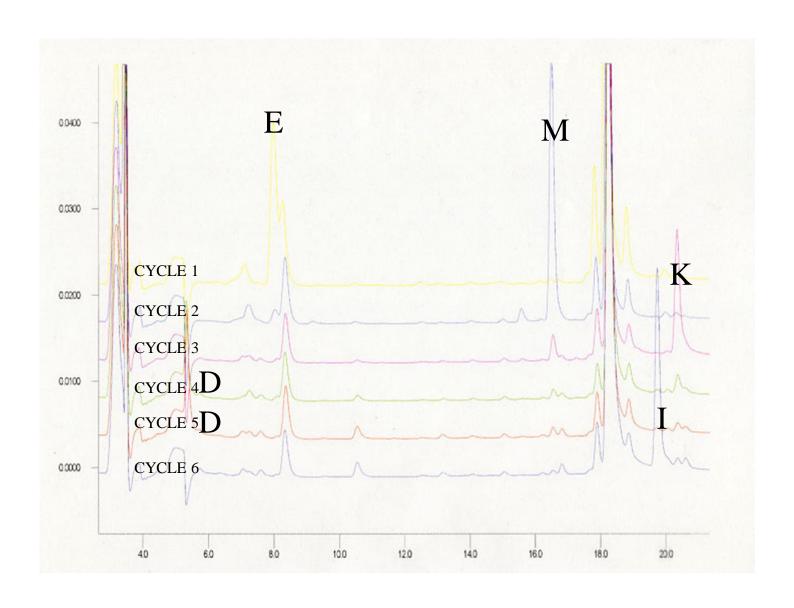

(THIS LINK OFFERS EVEN AN ANIMATION OF EDMAN DEGRADATION)

http://www.biotech.iastate.edu/facilities/protein/nsequence494.html

HERE ANOTHER:

http://www.dartmouth.edu/~mbcf/Services/ProtSeq/EdmanDegrad.... **Edman Degradation Edman Degradation** HOME Services Equipment Personnel Oligo Order About Us Comments, questions & inquiries about the Dartmouth College Molecular Biology (MB) Core services and web site are welcome mbcore@dartmouth.edu

Protein microsequencing by Edman degradation



Dr. Simona Fontana, responsible of microsequencing service.

SEQUENCE ANALYSIS BY LIQUID CHROMATOGRAPHY

EACH CYCLE RESEMBLES ONE CHROMATOGRAPH RUN

A TYPICAL EXAMPLE:

AQUIRED SEQUENCE (6 FIRST AMINO ACIDS):

GLU-MET-LYS-ASP-ASP-ILE