

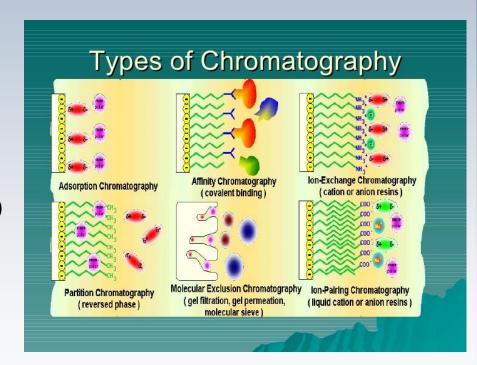
Ion exchange and affinity chromatography

Maciej Lalowski
PhD, Adjunct Professor
Biomedicum Helsinki
Helsinki University
and
Folkhälsan Institute
of Genetics
maciej.lalowski@helsinki.fi

Introduction to Basic Protein Chemistry and Proteomics with Clinical Applications: 30.09.2014

Chromatography

- Separation of biomolecules which is based on their physicochemical characteristics:
 - Polarity (solubility, volatility, adsorption)
 HIC, RP
 - Size/mass (diffusion, sedimentation)
 Size exclusion Chr.
 - Ionic characteristics (charge)
 Ion Exchange Chromatography
 - Shape (ligand binding, affinity)
 Affinity Chromatography
- Based on these properties the molecules can be differentially separated between the stationary phase and mobile phases
- Introduced in 1901 by Mikhail Tsvet, for separation of plant pigments



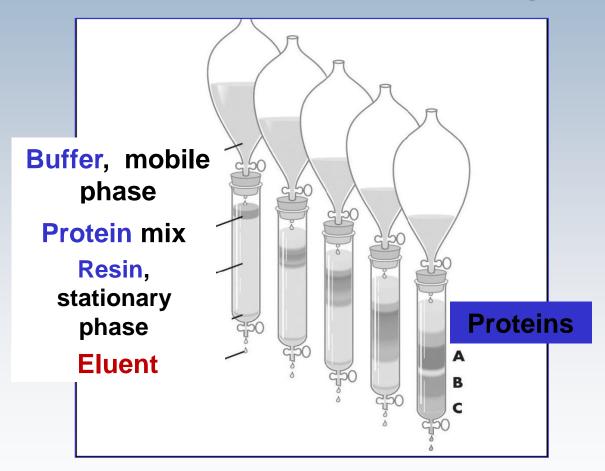
Liquid chromatography (LC)

- IEX ⇒ anion exchange
 - → cation exchange
 - chromatofocusing
- Affinity chromatography

group separations vs. specific interactions

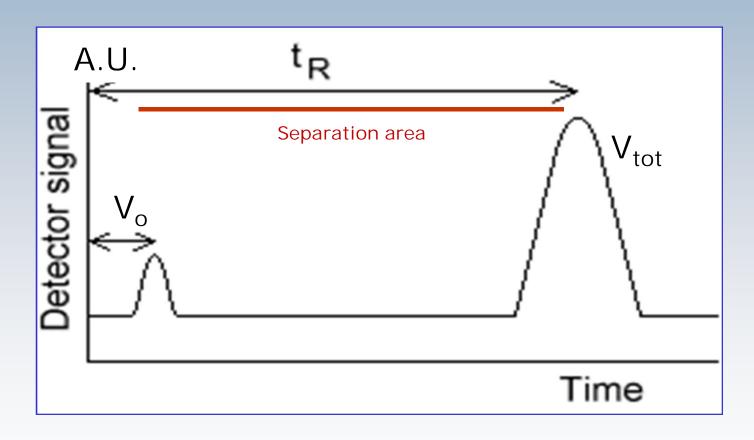
- **HIC** (Hydrophobic Interaction chromatography)
- RP (Reverse-Phase) chromatography
- Size exclusion/Gel filtration non-interacting & medium resolution

Adsorptive chromatography

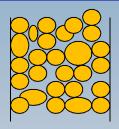

- Biomolecule adsorps to the matrix (stationary phase) reversibly
- Adsorption is controlled by the mobile phase - elution

IEC: proteins in a low-salt mobile phase may be bound to the matrix, but when the composition of the mobile phase is changed to high-salt, the interaction is reversed and the proteins elute

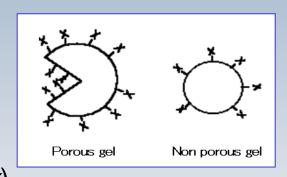
Liquid chromatography: basics


Chromatography steps:

- 1. Equilibration
- 2. Injection
- 3. Elution
- 4. Washing

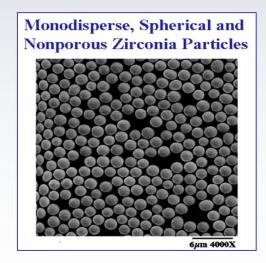

Chromatogram: basics

Meilahti Clinical Proteomics Core Facility


Matrix

Porous

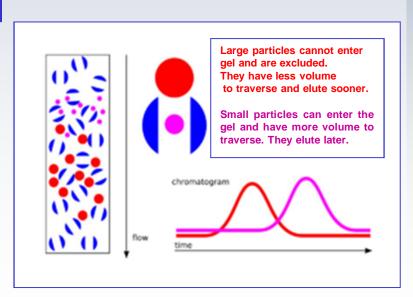
Cellulose sugar polymers (agarose, dextran) polymers (acrylamide, styrene) silica coated with polymers


Nonporous

Styrene
Acrylates
Zirconia
Monolith
(ProSwift, Dionex)

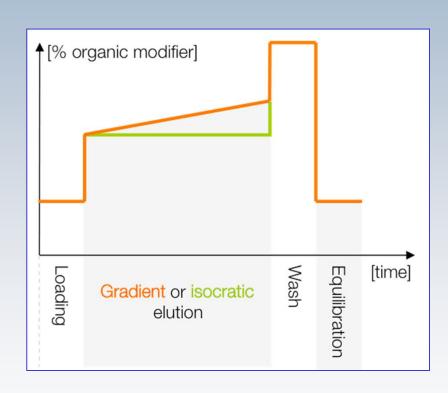
- Particle size, ~5 μm
- Pore size i.e. 100-200 Å
- Chemical and Physical stability
- → Temperature <80°C vs >200°C)
- Pressure Porous < Nonporous
- pH Porous < Nonporous
- Capacity Porous > Nonporous

 $2 \mu m \bigcirc$



Diffusion and porous matrices

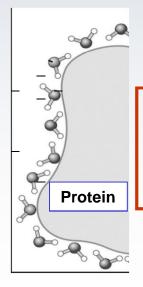
- Size exclusion chromatography is based on diffusion and molecules in solution are separated by their size (molecular weight)
- -Small molecules diffuse into smaller pores and travel slowly, therefore elute last, close to V_{total}
- Large molecules do not fit into pores and elute first, close to V₀
- In affinity and IE chromatography the functional groups are attached to surface of particles inside the pores



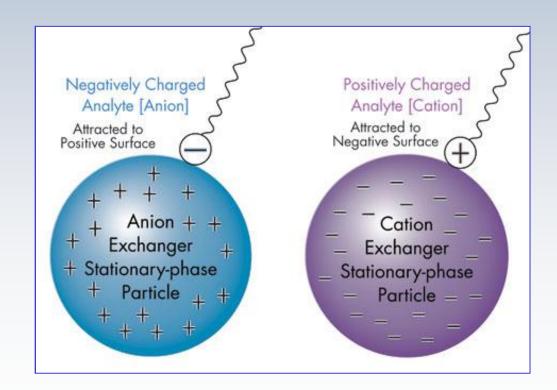
Mobile phase

- Composition
- Type of elution
 - isocratic vs gradient elution (gradient shape)
- Flow rate
 - Depends on the type of matrixAffects resolution

- in porous matrixes should be slow enough to allow diffusion to pore cavities
- in nonporous matrixes higher flow rates may be used


Ion exchange chromatography

Based on ionic interactions

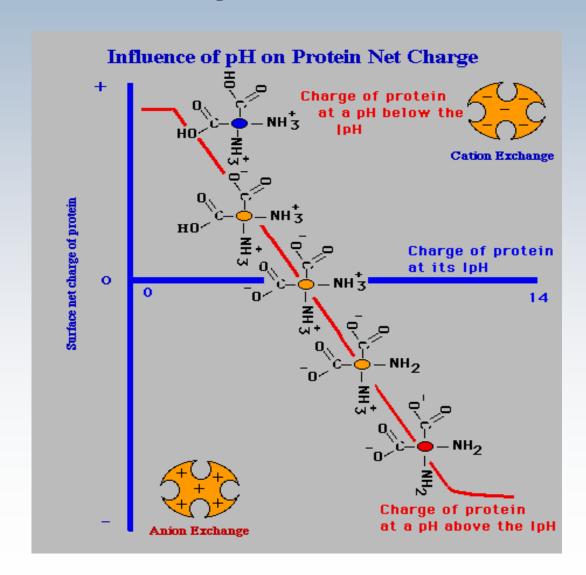

Anion exchange Cation exchange

local versus net charge

IEC in practise

- 1. Choose the matrix type according to your target protein
- 2. Equilibrate (low salt, 20 mM)
- 3. Inject protein sample (in low salt), balance
- 4. Apply gradient (increasing salt) to elute proteins
- Obey buffer instructions:
 AEC- cationic buffers, CEC- anionic buffers
- Non-ionic detergents (!)
- Elution:
- 1. *Increasing* salt gradient (0 →1M NaCl in 20 mM buffer)
- 2. *pH gradient* (ampholytes in chromatofocusing)
- 3. *Type of gradient*: linear gradient /step wise/shape of gradient

Titration curve of a protein

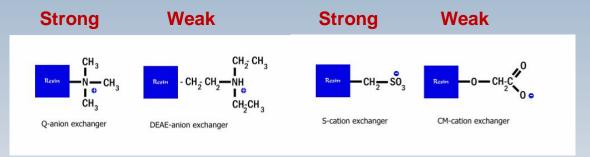

Charge of a protein is pH dependent!

Amino acids with **ionizable** side chains:

Arg, His, Lys Asp, Glu Cys, Tyr

pl =isoelectric point

if pH > pl use anion EC if pH < pl use cation EC



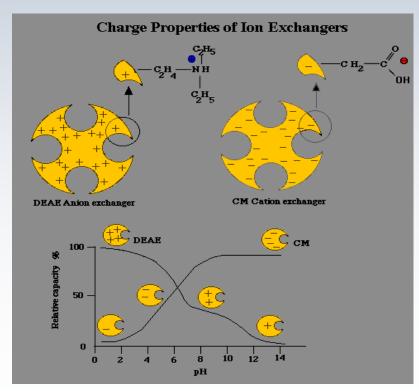
IEC matrices

Strong versus weak ion exchangers

anion EC: positive matrix

DEAE diethyl aminoethyl (W)

QAE quaternary aminoethyl


Q quaternary amine

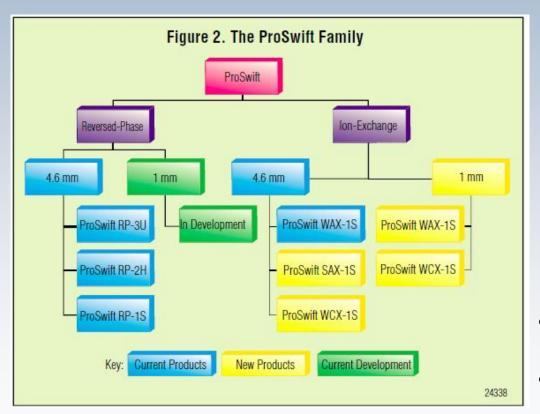
cation EC: negative matrix

CM carboxymethyl (W)

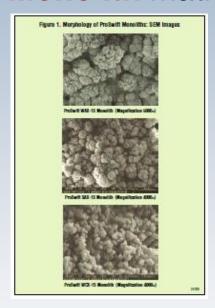
SP sulphopropyl

S sulphonate

Meilahti Clinical Proteomics Core Facility

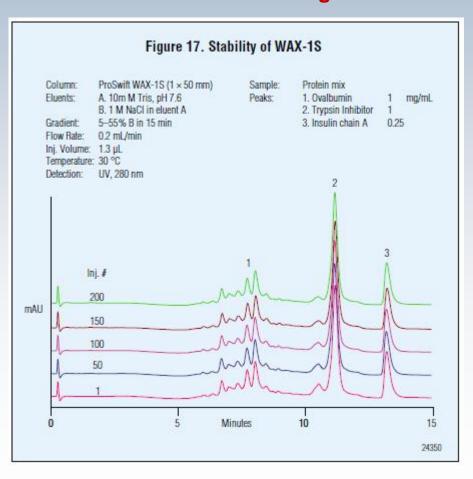

Buffers for exchange chromatography

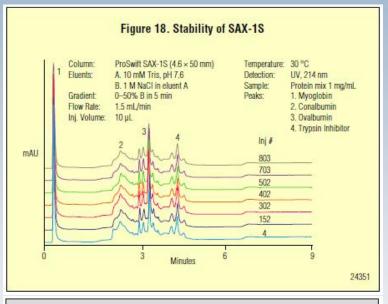
Molecule (AEC)	рКа	dpKa/degree C.	Counter ion	Molecule (CAC)	рКа	dpKa/degree C.	Counter ion
N-methyl piperazine	4.75	-0.015	chloride	Maleic acid	2.00		sodium
piperazine	5.68	-0.015	chloride or formate	Malonic acid	2.88		sodium
L-histidine	5.96		chloride	citric acid	3.13	-0.0024	sodium
bis-Tris	6.46	-0.017	chloride	lactic acid	3.81		sodium
bis-Tris propane	6.80		chloride	formic acid	3.75	0.0002	sodium or lithium
triethanolamine	7.76	-0.020	chloride or acetate	butaneandioic acid	4.21	-0.0018	sodium
Tris	8.06	-0.028	chloride	acetic acid	4.76	0.0002	sodium or lithium
N-methyl- diethanolamine	8.52	-0.028	chloride	malonic acid	5.68		sodium or lithium
diethanolamine	8.88	-0.025	chloride	phosphate	7.20	-0.0028	sodium
1,3-diaminopropane	8.64	-0.031	chloride	HEPES	7.55	-0.0140	sodium or lithium
ethanolamine	9.50	-0.029	chloride	BICINE	8.35	-0.0180	sodium
piperazine	9.73	-0.026	chloride				
1,3-diaminopropane	10.47	-0.026	chloride				
piperidine	11.12	-0.031	chloride				
phosphate	12.33	-0.026	chloride				

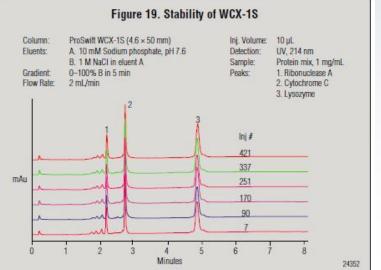


Examples: ProSwift matrices (www.dionex.com)

Monolith matrix


- Combines the stability of nonporous and capacity of porous matrices
- Optimal mass transfer in minimal diffusion...
- High loading capacity and reproducibility!
- Can be used as1stdimension in multidimensional chromatography




ProSwift: IEC columns

Weak anion exchanger

Strong Anion exchanger

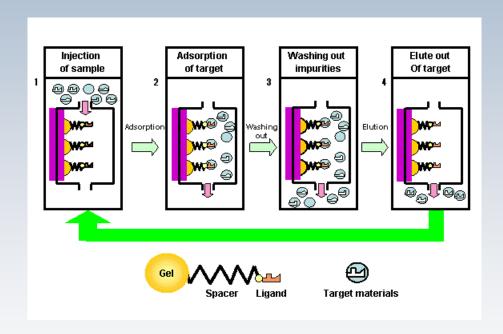
Strong cation exchanger

IEC: summary

PROS:

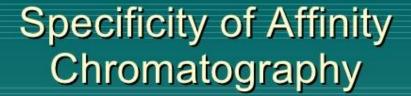
- Concentrates the sample
- Sample volume is not a restricting factor
- Gentle
- High resolution (strong vs weak)

CONS:


- No salt in binding phase
- Sample eluted in high salt

Affinity chromatography

- Discovered in 1968 by
 - P. Cuatrecasas and M. Wilcheck
- Based on specific interactions
- Group affinity vs specific affinity
- Elution nonspecific vs specific
- Effective purification in one step
- Concentrating



Various types of affinity chromatographies are used

Specificity of affinity chromatography

 Specificity is based on three aspect of affinity

Matrix: for ligand attachment.

Spacer arm: used to bind ligand to matrix

Ligand: molecule that binds reversibly to a specific target molecule(site of interaction)

Matrices in affinity chromatography

- The matrix simply provides a structure to increase the surface area to which the molecule can bind
- The matrix must be activated for the ligand to bind to it but still able to retain it's own activation towards the target molecule
- Amino, hydroxyl, carbonyl and thiol groups located with the matrix serve as ligand binding sites
- Matrices are made up of agarose and other polysaccharides
- The matrix also must be able to withstand the decontamination process of rinsing with sodium hydroxide or urea

Examples of interactions in affinity chromatography

Ligand : Target

- Antigen : antibody
- Enzyme : substrate analogue
- Binding protein: Ligand
- Receptor : ligand
- Lectin: polysaccharide, glycoprotein
- Nucleic acid : complementary base sequence
- Hormone, vitamin: receptor, carrier protein.
- Glutathione: glutathione-S-transferase or GST fusion proteins.
- **Metal ions**: Poly (His) fusion proteins, native proteins with histidine or cysteine on their surfaces.
- Other tags: tag affinity chromatography

Ligands

- The ligand binds only to the desired molecule within the solution
- The ligand attaches to the matrix which is made up of an inert substance
- The ligand should only interact with the desired molecule and form a temporary bond
- The ligand/molecule complex remains in the column, while the contaminants are eluted
- The ligand/molecule complex dissociates by changing the pH

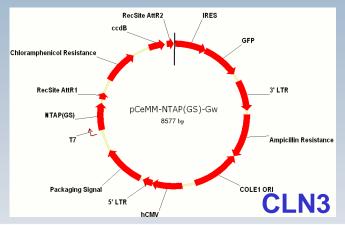
Applications

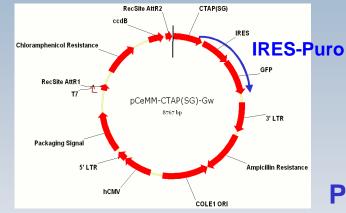
- Purify and concentrate a substance from a mixture into a buffering solution
- Reduce the amount of a substance in a mixture
- Discern what biological compounds bind to a particular substance, such as drugs
- Purify and concentrate an enzyme solution
- Genetic Engineering nucleic acid purification
- Production of Vaccines antibodies purification from blood serum
- Basic Metabolic Research protein or enzyme purification from cell free extracts

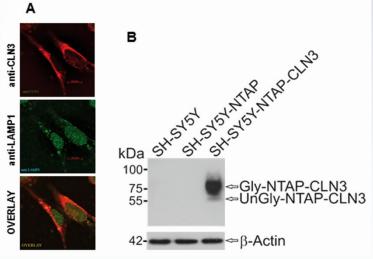
Definitions

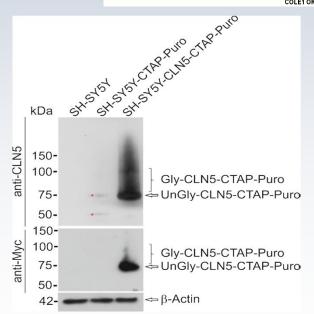
- Avidin (or Streptavidin) -biotin interaction is used to purify proteins
- Avidin: protein from egg white (birds, reptiles...)
- Streptavidin is a tetrameric protein purified from the bacterium Streptomyces avidinii
- Biotin: (vitamin H or B7) cofactor in the metabolism of fatty acids and leucine, and in gluconeogenesis
- The non-covalent bond formed between biotin and avidin or streptavidin has a binding affinity >most antigen and antibody bonds ~ strength of a covalent bond
- Affinity chromatography using immobilized avidin or streptavidin to separate the biotinylated protein from a mixture of other proteins and biochemicals

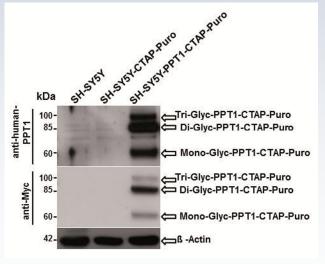
Meilahti Clinical Proteomics Core Facility


Peptide and protein affinity tags commonly used in purification of fusion proteins


•		•		•		•
Tag name	Sequence	Origin	Size	Binding partner	Comment	Reference
Peptide tags Calmodulin- binding peptide	KRRWKKNFIAVSAANRFKKISSSGAL	Rabbit skeletal muscle	26 aa - 2960 Da	Calmodulin	Binding in presence of calcium chloride	[41]
c-myc	EQKLISEEDL	Human oncogene c- myc	10 aa - 1202 Da	Anti-c-myc antibody (9E10)	carciain emoriae	[42]
FLAG	DYKDDDDK	Bacteriophage T7	8 aa – 1012 Da	Anti-FLAG antibody (M1, M2, M5)	Improved 3XFLAG system	[43]
НА	YPYDVPDYA	Hemaglutinin from human influenza virus	9 aa - 1102 Da	Anti-HA antibody (12CA5)		[44]
Hexa-Histidine (His-Tag)	ннннн	Artificial	6 aa – 840 Da	Ni ²⁺ -NTA, Co ²⁺ -CMA		[45]
Isopeptag	TDKDMTITFTNKKDAE	Streptococcus pyogenes	16 aa	Pilin-C	Forms covalent bond	[46]
Strep-tag II	WSHPQFEK	Streptomyces avidinii (Streptavidin)	8 aa - 1060 Da	Streptavidin		[47]
Protein tags						
BioEase™/ AviTag™	http://www.tools.invitrogen.com/content/sfs/ manuals/pmtbioeasedest_man.pdf GLNDIFEAQKIEWHE	K. pneumonia/E. coli	72/15 aa	Biotinylation by birA (E. coli) binding by Streptavidin/ Avidin	Variation of the BCCP approach	[48]
Biotin Carboxyl Carrier Protein (BCCP)		Sulfolobus tokodaii	169 aa	Biotin Protein-ligase OR Streptavidin/Avidin	kD = 1.2 nm	[49]
Green fluorescent protein (GFP)	http://www.colorado.edu/mcdb/MCDB1151/indproj/gfpseq.html	Aequorea victoria	238 aa - 26.9 kDa	Anti-GFP Antibody	Numerous derivates	[50,51]
Glutathione S- transferase (GST)	http://www.ncbi.nlm.nih.gov/nuccore/ U58012.1	Schistosoma japonicum	26 kDa	Glutathione	Forms dimers	[52,53]
Maltose-binding protein (MPB)	http://www.ncbi.nlm.nih.gov/nuccore/J01648.1	Escherichia coli	40 kDa	Amylose		[54]
Tandem-Affinity- Purification (TAP)	http://www.embl.de/ExternalInfo/seraphin/ TAPdescription.html	Rabbit + Staphylococcus aureus	∼20 kDa	1st step: IgG matrix 2nd step: Calmodulin	ProteinA + TEV cleavage site + CBP	[9]




TAP purification of protein complexes from mammalian cells

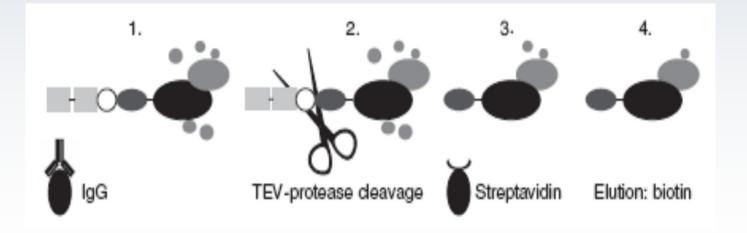


PPT1 and CLN5

Protein G Protein G TEV SBP -GS

SG Myc SBP TEV TEV Protein G Protein G

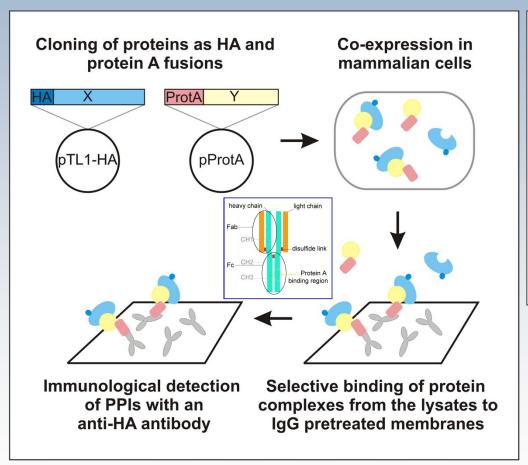
TAP purification of protein complexes from mammalian cells

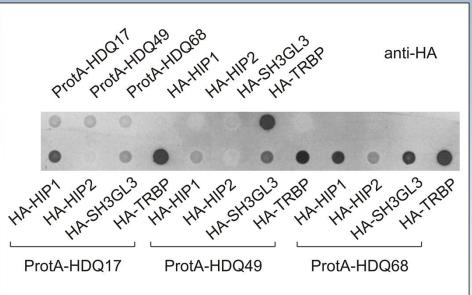

Benefits:

- •Several members of a complex can be tagged, giving an internal check for consistency
- Detects real complexes in physiological settings

Drawbacks:

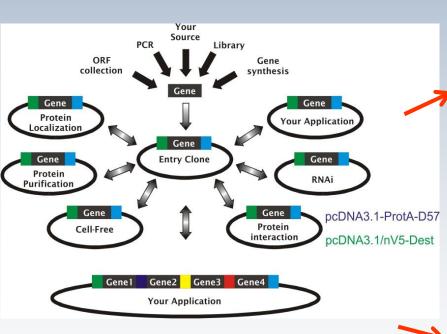
- Might miss some complexes not present under the given conditions
- Tagging may disturb complex formation
- Loosely associated components may be washed off during purification

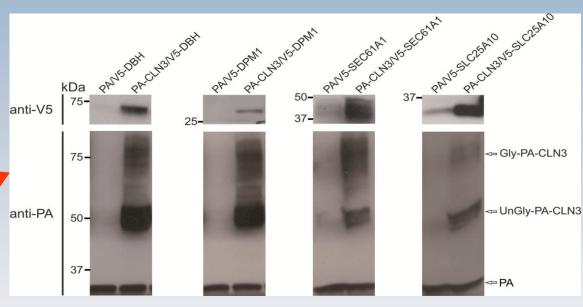

TAP Complexes purification

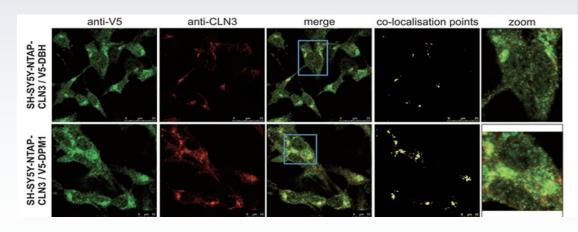


Validation of interactions using affinity-membrane technology

Interactions between huntingtin and known interaction partners

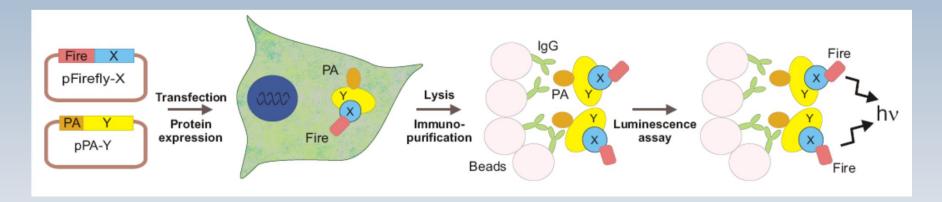

The principle

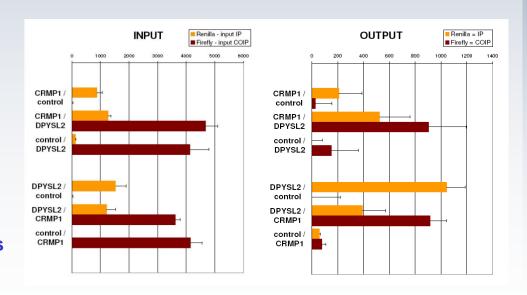

Meilahti Clinical Proteomics Core Facility



Systematic validation of TAP-MS based CLN3 complex interactions

DBH- dopamine β -hydroxylase DPM1- dolichol P-mannosyl transferase 1 Lysosomal colocalization

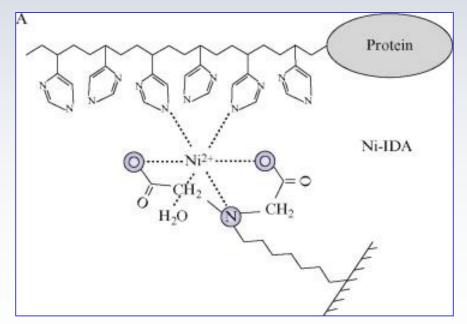



Validation of interactions using affinity-LUMIER technology

Adaptation of LUMIER (Barrios-Rodilles et al., 2005)

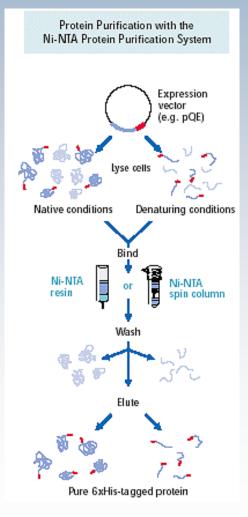
Reporter assay format:

- Readouts for IP and Co-IP
- Determination of binding affinities
- Validating and quantification of binary interactions

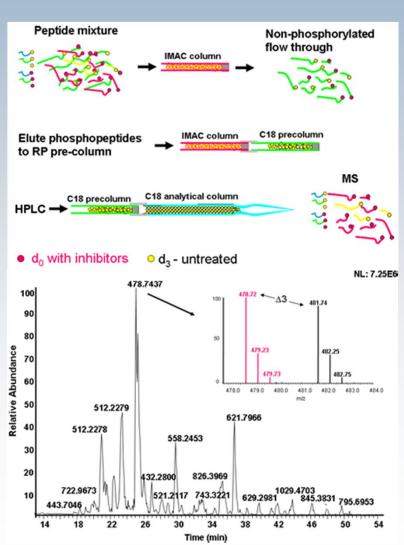


IMAC: Immobilized metal ion affinity chromatography

- Single step chromatography
- It is based on the known affinity of transition metal ions such as Zn²⁺, Cu²⁺, Ni²⁺, and Co²⁺ to histidine and cysteine in aqueous solutions First described by Hearon, 1948 and later Porath et al., 1975
- For Zn-finger proteins and recombinant proteins with ≥6x His-tag



Model of the interaction between residues in the His tag and the metal ion in tri-(IDA), tetra- (NTA), and pentadentate IMAC ligands (TED)



Examples of purifications with IMAC

www.qiagen.com

Meilahti Clinical Proteomics Core Facility

Chemical compatibility of purification of His-tagged protein using agarose-based IMAC (Ni-NTA) resins and its limitations

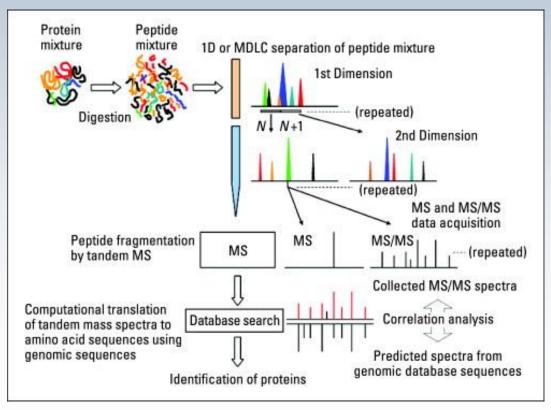
Component	Limitation (up to)	Component	Limitation (up to)	
Buffers		Salts		
Na-phosphate	Recommended, limit not known	NaCl	4 M	
Phosphate citrate	Limit not known	$MgCl_2$	4 M	
Tris-HCl, HEPES, MOPS	100 m <i>M</i>	CaCl ₂	$5 \text{ m}M^c$	
Citrate	60 mM	NaHCO ₃	Not recommended	
Detergents (in 300 mM NaCl)		Ammonium salts	Not recommended	
n -Hexadecyl- β -D-maltoside	0.0003% (w/v)	Protease inhibitors		
n -Tetradecyl- β -D-maltopyranoside	0.005% (w/v)	EDTA	$1 \text{ m}M^a$	
n -Tridecyl- β -D-maltopyranoside	0.016% (w/v)	Commonly used protease inhibitors ^d	Compatible in effective concentrations	
Brij 35	0.1% (v/v)	Complete cocktail (EDTA-free)	1× concentrated	
Digitonin	0.6% (w/v)	Denaturants		
Cymal 6	1% (w/v)	Urea	8 M	
<i>n</i> -Nonyl- β -D-glucopyranoside (NG)	1% (w/v)	Gu-HCl	6 M	
n -Decyl- β -D-maltopyranoside (DM)	2% (w/v)	Amino acids		
n -Dodecyl- β -D-maltoside (DDM)	2% (w/v)	Histidine	$1-2 \text{ m} M^b$	
C12-E9	1% (w/v)	Glycine	Not recommended	
n -Octyl- β -D-glucopyranoside (OG)	1.5% (w/v)	Cysteine	Not recommended	
Triton X-100, Tween, NP-40	2% (v/v)	Glutamate	Not recommended	
Triton X-114	2% (v/v)	Aspartate	Not recommended	
Fos-Cholines	0.05% (w/v)	Arginine	500 mM	
Dodecyldimethyl-phosphineoxide	0.15% (w/v)	Organic solvents		
N,N-Dimethyldodecylamine-N-oxide (LDAO)	0.7% (w/v)	Isopropanol	60% (v/v) ^e	
CHAPS	1% (w/v)	Ethanol	20% (v/v)	
Laurosyl-sarcosine	1% (w/v)	Reducing reagents	* *	
SDS	$0.3\% (\text{w/v})^a$	β-ΜΕ	20 mM	
Other	AND COMPANY OF THE STATE OF THE	TCEP	20 mM	
EGTA	$1 \text{ m}M^a$	DTT	10 mM	
Imidazole	10-20 mM ^b	DTE	10 mM	
Hemoglobin	Not recommended			
Glycerol	50% (v/v)			

Affinity chromatography: summary

PROS:

- Extremely high specificity
- High degrees of purity can be obtained
- The process is very reproducible
- The binding sites of biological molecules can be simply investigated

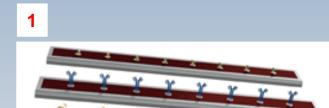
CONS:

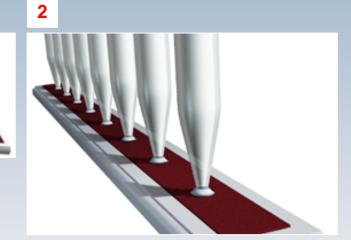

- Expensive ligands
- Leakage of ligand
- Degradation of the solid support
- Limited lifetime
- Non-specific adsorption
- Relatively low productivity

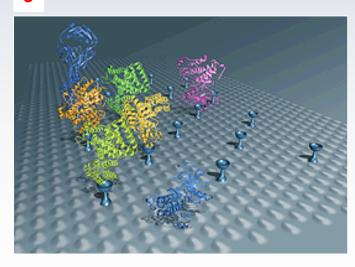
MudPIT proteomics

- MudPIT = Multidimensional Protein Identification Technology
- Used for separation and identification of complex protein/peptide mixturesalternative to 2D-electrophoresis

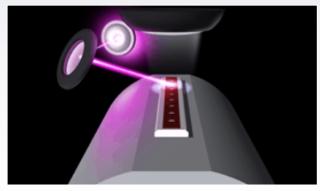
Mud Pit


SELDI-TOF Mass Spectrometry


- Surface-enhanced laser desorption/ionization-TOF Mass spectrometry (Biorad Inc.)
 - •Mass spectrometric technology on a chromatographic chip surface
 - •Used to analyze complex biological mixtures such as serum, urine, milk, blood
 - Biomarker discovery, protein profiling, immunoassay applications, protein-protein interactions
 - Differentially expressed proteins are determined by comparing protein peak intensities between mass spectra



Proteomics using SELDI-TOF



3

4

- 1. Choosing an array (hydrophobic, hydrophilic, anion exchange, cation exchange, and metal affinity surfaces)
- 2. Sample application (serum, cell and tissue lysates, urine, cerebrospinal fluid, or other protein homogenates (including those with high salt or detergent concentrations); 96-well format)
- 3. Removal of Unbound Components and Application of Energy Absorbing Molecules (EAMs) selective washes create on-chip protein (retentate) maps. Afterwards, a solution containing EAMs in an organic solvent is applied, uniform crystalization
- 4. Analysis in the ProteinChip SELDI Reader (compund detection by Time-of-Flight mass spectrometry, nitrogen laser