

	and c	wantific	ation i	result	\$
		lantine		Court.	
ID Statistics (Protein-T	hresholded): 683	17 total spectra, 68377 n	on-empty spectra	; 18053 proteins	searched
Unused (Conf) Cutoff	Proteins Detected	Proteins Before Grouping	Distinct Peptides	Spectra Identified	% Total Spectra
>2.0 (99)	696	1049	15563	45529	66.6
>1.3 (95)	813	1211	15981	46134	67.5
>0.47 (66)	1006	1969	17037	47670	69.7
Quant Settings	Apply	Bias cor	roction		
			IECTION	n: norm	nalise une
Denominator:	IT114 _	l protein	amoun	ts in th	nalise une ne sample
Denominator. Bias Correction Ratio Auto I IT115:IT114 1.2790 IT116:IT114 3.2595 IT16:IT114 3.2595	IT114 Auto Manual Bias 1.2790 3.2595 2.5595 3.559 3.5595 3.559 3.5595 3.559 3.5595 3.559 3.55 3.55 3.55	protein	amoun	n: norm nts in th	nalise une ne sample
Denominator:	IT114 ■ Auto ■ Bias Manual Bias 1.2790 3.2695 3.5022 3.5022	protein	amoun	i: norm ts in th	nalise une ne sample

Only peptides with a check in the Used column in the Peptide Quantitation table are used in the calculation of the average ratio for the protein. The text in the Annotation column provides more information as to why the peptide is or is not used for quantitation.

The Pro Group[™] Algorithm assigns peptides to one of three types:

- Peptide is usable for quantitation At least one ratio is shown, Used is checked, and "auto" is shown in the Annotation column. For iTRAQ[™] Reagent-labeled samples, which can have up to seven ratios per peptide, sometimes some of the ratios for a particular peptide are blank. The blank ratios are never used, even when the Used check box is checked.
- Ratio could not be determined or is suspicious in some way Ratio, Used, and Annotation columns are all blank.
- Ratio can be calculated but peptide is felt to be unusable for quantitation Ratio is shown, Used is *not* checked, and the Annotation column shows the reason this peptide is deemed unusable.

Peptide ratios can be manually included or omitted from average ratio calculation; see <u>Manually</u> <u>Choosing Peptides for the Ratio Calculation</u>.

-biological samples are analyzed in separate MS runs and the correspondence between spectral features across the runs is established by means of computational tools

-allows analysis of a large number of spectrum features and allows higher data throughput

-is compatible with applications that require profiling of multiple biological samples e.g. biomarker discovery

-does not require identification of the peptide sequence corresponding to each observed spectrum feature before quantification

-drawback: increased computational complexity

LC-MS data alignment is not a trivial task for complex mixtures The goal of alignment is to match corresponding peptide features in the m/z-scan plot from different experiments in the presence of retention time variation and experimental noise

