

Systems Biology in Metabolomics

Maciej Lalowski PhD, Adjunct Professor **Biomedicum Helsinki** Helsinki University and Folkhälsan Institute of Genetics maciej.lalowski@helsinki.fi

TrasMed Course 25.09.2014

HEISINGIN YHOPIST

UNIVERSITY OF HELSINKI

Basic definitions:

- Metabolites are the intermediates and products of metabolism. The term *metabolite* is usually restricted to small molecules. A primary metabolite is directly involved in normal growth, development, and reproduction, e.g. alcohol. A secondary metabolite is not directly involved in those processes, but usually has an important ecological function. Examples include antibiotics and pigments. Some antibiotics use primary metabolites as precursors, e.g. actinomycin, a product of primary metabolite tryptophan.
- Metabolome The metabolome forms a large network of metabolic reactions, where
 outputs from one enzymatic chain reaction are inputs to other chemical reactions. The
 metabolome represents the collection of all metabolites in a biological cell, tissue, organ or
 organism, which are the end products of cellular processes.
- Metabolomics "systematic study of the unique chemical fingerprints that specific cellular processes leave behind", the study of their small-molecule metabolite profiles.
- Metabolomic pathways are series of chemical reactions occurring within a cell. In each pathway, a principal chemical is modified by a series of chemical reactions. This collection of pathways is called the metabolic network. Pathways are important to the maintenance of homeostasis within an organism. Catabolic (break-down) and anabolic (synthesis) pathways often work interdependently to create new biomolecules as the final end-products.

Major metabolic pathways

A metabolic pathway involves the step-by-step modification of an initial molecule to form another product.

1) product is used immediately, as the end-product of a metabolic pathway

2) product initiates another metabolic pathway, called a flux generating step

3) product is stored by the cell.

A molecule called a substrate enters a metabolic pathway depending on the needs of the cell and the availability of the substrate. An increase in concentration of anabolic and catabolic intermediates and/or end-products may influence the metabolic rate for that particular pathway.

Meilahti Clinical Proteomics Core Facility

Entrez Gene: http://www.ncbi.nlm.nih.gov/gene/:

Elic Edit Yew Higtory Boolmarks Tools Help In Dest Vaced C Customice Links Customice Li	ACLY ATP citrat	e Iyase [Homo sapiens] - Gene - NCBI - Mozilla Firefox			- 7
C Most Visited C Mittel University's ho In Most Visited C catomice Links Link to University's ho In Most Visited C catomice Links Link to University's ho In Most Visited C catomice Links Link to University's ho In Most Visited In Most Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In Not Visited In Most Visited In Not Visited In No	jle <u>E</u> dit ⊻iew Hi	story Bookmarks Tools Help			
Most Visited Customize Links Link to University's ho C Figure 4 analyzes how mutations c Search C Figure 4 analyzes how mutations c Search C ALLY ATP citrate lyase [Homo sapie Visite C Search Search Search Search Search C Search Search Search Search Search C Search Search Search Search Search Search Search Search Search ACLY Apple search Search Search Search Search ACLY Apple search Search ACLY Search Search Search <th><>> - C</th> <th>🗙 🏠 🔀 http://www.ncbi.nlm.nih.gov/gene/47</th> <th></th> <th>☆ - 😽 Google</th> <th>ş</th>	<>> - C	🗙 🏠 🔀 http://www.ncbi.nlm.nih.gov/gene/47		☆ - 😽 Google	ş
	Most Visited 📶 Cu	stomize Links 📕 Link to University's ho			
ALLY APP citrate lyase [ritomo sapie	🗊 🔍 + Figure 4 ai	nalyzes how mutations c 💌 Search 💋 🔶 💽 Facebook - 🖲 Amazon 🔡 YouTube 💌 Weather - 🔤	BBC News +	🛐 BBC Sports 🔹	🔍 Options 🔹 ⋗
NCBI Resourcest© How To © My NCBI Sig Send to: Search R Issilar Settings: Full Report Search NCLY ATP citrate lyase [Homo sapiens] Table of contents Issilar Settings: Full Report Table of contents Summary Onioi regions, transcripts, and products Buildgraphy Official Symbol ACLY protecting tigs: Active protecting tigs: Table of contents Summary Official Symbol ACLY protecting tigs: Continic regions, transcripts, and products Official Symbol ACLY protecting tigs: Minito 2728 General gene info Sear adus, REVEWED General gene info General gene info Organism Homo zapieos Additional links Chronescent adustript tigs: Innexe Table of contents Contents Contents Summary Summary Sear adustript tigs: Contents tigs: Summary Official Symbol ACLY protecting tigs: Minito 2728 General gene info Graphing Examinity tigs: Contents the provide tigs: Additional links Contents Organism Homo zapieos </td <td>ACLY ATP citrate</td> <td>e lyase [Homo sapie 🔸</td> <td></td> <td></td> <td></td>	ACLY ATP citrate	e lyase [Homo sapie 🔸			
Gene Search Imite Advanced H Isplay, Settinge: Full Report Send to: Table of contents XCLY ATP citrate lyase [<i>Homo sapiens</i>] Summary Genomic context. Genomic context. Summary Official Symbol ACLY posted by (Sing) Genomic context. Genomic context. Official Symbol ACLY posted by (Sing) General posten indo General posten indo Primary Source Bibliography General posten indo General posten indo Official Symbol ACLY posted by (Sing) General posten indo General posten indo Primary Source Bibliography General posten indo General posten indo Official Symbol ACLY posted by (Sing) General posten indo General posten indo Primary Source Bibliography General posten indo General posten indo General Posten coding Restrict Sing General posten indo General posten indo General Posten coding Restrict Sing General posten indo General posten indo Graphice Bibliography Integenoes acquences Restrict Sing General posten indo Grandbibliography	NCBI Resources	ସା How To (ସ)			My NCBI Sian In
Gene Network Search bindra Settings: Full Report. Sand to: F ACLY ATP citrate lyase [Homo sapiens] Sand to: Table of contents Summary Summary Genomic context. Genomic context. Official Symbol ACLY protectory fights Genomic context. Genomic context. Official Symbol ACLY protectory fights General context. General context. Official Symbol ACLY protectory fights General gene info General gene info Official Symbol ACLY protectory fights General gene info General gene info Official Symbol FERSeq status Reference sequences Reference sequences General gene info General gene info General gene info Organism Micro sapiens General gene info General gene info Organism Micro sapiens General gene info General gene info Unege Eukardot status Fertience sequences Related sequences Additional Infe Contexters General gene info Unege Eukardot status Fertience sequences General gene info Unege					
Units Advanced Band to: with the proof the p	3ene	Gene		Search	
Bester Set Full Report Send to " Table of contents Official Symbol ALCY protectory BDMS Summary		Limits Advanced			Help
ACLY ATP citrate lyase [Homo sapiens] Table of contexts Sene 1D: 47, updated on 1-0dx2011 Summary Summary Genomic context Summary Control table yase protective yiting Official Symbol ACLY protective yiting See relate Ensemplic NS 50000013 1473; HPR Do0155; MIM:108728 See relate Ensemplic NS 50000013 1473; HPR Do0155; MIM:108728 Gene type protein coding Referse status EVEWED Organism Homo zapiens Catarithi, Hominidae; Homo Related sequences Also known as ACL ATPCL; CLATP Summary AP citrate lyaze is the primary enzyme responsible for the synthesis of cytosolic acetyLCoA in many tissues. The enzyme is a tetram (relative molecular weight approximately 440,000) apparently indencia subunits. It catalyzes the formation of acetyLCoA, and oxalicacetate from citrate and CoA with a concomitant hydrolysis of ATP to ADP and phosphate. The product, acetyLCoA, and oxalicacetate from citrate and CoA with a concomital variants encoding disti	<u>)isplay Settings:</u> 🕑 Fu	ll Report	Send to: 🗹]
Summary Seene ID: 47, updated on 1-0d-2011 Summary Official Symbol ACLY prostored by <u>BMS</u> Official Symbol ACLY prostored by <u>BMS</u> See related <u>Ensemblic Hostored Symbol</u> ACLY prostored by <u>BMS</u> New <u>BMS</u> Reference sequences Educatorial relation and <u>Symbol</u> ACLY and <u>Symbol</u> ACLY and <u>Symbol</u> ACLY and <u>Symbol</u> ACLY and <u>Symbol</u> ACLY New <u>BMS</u> Also known as ACL; <u>ATPC</u> ; <u>CLATP</u> Summary ATP cittate lyses is the primary ersponsible for the synthesis of optosolic acetyl-COA in many tissues. The enzyme is a tetramer (relative molecular weight approximately 440,000) of apparently identical subunits, it totalizes the formation and COA with a conomitant hydrolysis of ATP to ADP and phosphate. The product acetyl-COA and ouclaocetate from oither and COA with a conomitant hydrolysis of ATP to ADP and phosphate. The product acetyl-COA and ouclaocetate from oither and COA with a conomitant hydrolysis of ATP to ADP and phosphate. The product acetyl-COA and ouclaocetate from oither and COA with a conomitant hydrolysis of ATP to ADP and phosphate. The product acetyl-COA and ouclaocetate from oither and COA with a conomitant hydrolysis of ATP to ADP and phosphate. The product acetyl-COA and ouclaocetate from oither and COA with a conomitant hydrolysis of ATP to ADP and phosphate. The product acetyl-COA and Distragence involved in the biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene (Deree Domains Dinvolved in the biosynthesis of acetylcholine. Two transcript		lyaca [Homo capiana]		Table of contents	
Seme 10: 47, updated on F-Ud-2011 Genomic context Genomic cont		lyase [nonio sapiens]		Summary	
Summary Official Symbol ACLY poutled by <u>MSNC</u> Official Symbol ACLY poutled by <u>MSNC</u> Official Full Name ATP ditate lyase posted by <u>MSNC</u> Official Full Name ATP ditate lyase posted by <u>MSNC</u> Official Symbol Common Symbol See relate Description	ene ID: 47, updated (n 1-U062011		Genomic context	
Official Symbol ACLY productory MONE Interactions Official Symbol ACLY productory MONE General gene info Official Symbol General gene info General gene info See related EnsemblicNS000000131473; HPRD:00155; MIM:108728 Reference sequences General protein info Reference sequences Related sequences Organism Homo statism Reference sequences Urreage Eukaryoti, Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorthini; Catarrhini; Hominidae; Homo Links Also known as ACL; ATPCL; CLATP Cufter on state and CoA with a concomitant hydrolysis of APTe to APD and phosphate; The product, acetyl-CoA and oxaloacetate from citrate and CoA with a concomitant hydrolysis of APTe to APD and phosphate; Integroup, acetyl-CoA and oxaloacetate from citrate and CoA with a concomitant hydrolysis of APTe to APD and phosphate; The product, acetyl-CoA, are bio/Systems Bio/Frojects costion : 17.921.2 Conserved Domains Conserved Domains costion : 17.921.2 Conserved Domains Genome requence: Chromosome 17 · NC_000017.10 Genome Genome	* Summary		8 7	Genomic regions, transcri	pts, and products
Official Symbol ACLY provided ytexts Interactions Official Full Name ATP official Symbol General general Official Full Name ATP official Symbol General general Frimary source HSNC:115 General general General general Gene type protein ooding Refseq status Related sequences General general Related sequences Related sequences Organism Homo sapiens Linesge Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostom; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorthin; Catarrhin; Hominidae; Homo Links Additional linke Also known as ACL: ATPCL; CLATP Links Links Summary ATP official weight approximately 440,0000 of apparently identical subunits. It catalyzes the formation of acetyl-CoA and oxaloacetate from oitrate and CoA with a concomitant hydrolysis of ATP to ADP and phosphate. The product, acetyl-CoA, serves several impodrant biosynthetio pathways, including lingogenesis and oholesterogenesis. In nervous tissue, ATP officiate-types may be involved in the biosynthesis of acetyloholine. Two transoript variants encoding distinct isoforms have been identified for this gene [provided by RefSeq. Jul 2008] Gonome Costion: 17.921.2 equence: Ese ACLY in MapViees Gonome Cordine ONT.10 (Junning			Bibliography	
Official Full Name A IP drate lyase proded/y <u>Bolo</u> General gene info Primary source HGNC:116 General gene info See related Ensembl:ENS 600000131473; HPRD:00165; MIM:108728 Refrence sequences Gene type protein coding Refrence sequences RefSeq status REV/EWED Relate sequences Organism Homo sapiens Additional links Lineage Eukaryota; khetzos; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplornhini; Catarrhini; Hominidae; Homo Order cDNA done Also known as ACI: ATPCL; CLATP Links Summary ATP ditate lyase is the primary enzyme responsible for the synthesis of cytosolic acetyl-COA in many tissues. The enzyme is a tetramer (relative molecular weight approximately 440,000) or apparently identical subunits. It catalyzes the formation of acetyl-COA and oxaloacetate from ditate and COA with a concomiant hydrohysis of ATP to ADP and phosphate. The product, acetyl-COA, areets several important biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] BioSystems Costin : 17 q21.2 lequence: Chromosome: 17; NC_000017.10 (40023179.40076272, complement) See ACLY in MapViewer Genomic Genomic Chromosome: 17 r NC_000017.10 Chromosome 17 - NC_000017.10 Genomic Genomic	Official Symbol	ACLY provided by HGNC		Interactions	
Primary source General protein info See related Energy bits 000000131473; HPRD:00156; MIM:108728 General protein info See related Energy bits 000000131473; HPRD:00156; MIM:108728 Reference sequences Gene type protein coding Reference sequences RefSeq status REVIEWED Refated sequences Organis Homo sapiens Additional links Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarohontoglires; Primate; Haplorthin; Catarthin; Hominidae; Homo Also known as ACL; ATPCL; CLATP Links Order oDNA clone Summary ATP citrate lyase is the primary enzyme responsible for the synthesis of cytosolic acetyl-CoA in many tissues. The enzyme is a tetramer (relative molecular weight approximately 440,000) of apparently identical subunits. It catalyzes the formation of acetyl-CoA, serves several important biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] BioSystems Conserved Domains CDS conserved Domains Conserved Domains conserved Domains Full text in PMC conserved Dorosine: 17; NC_000017.10 Genome Chromosome 17 - NC_000017.10	Official Full Name	ATP citrate lyase provided by <u>HGNC</u>		General gene info	
Gene type protein coding Gene type protein coding Ref Seq status REVIEWED Organism Homo sapiens Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorthini; Catarthini; Hominidae; Homo Also known as ACL: ATPCL; CLATP Summary ATP citrate lyase is the primary enzyme responsible for the synthesis of cytosolic acetyl-CoA in many tissues. The enzyme is a tetramer (relative molecular weight approximately 440,000) of apparently identical subunits. It catalyzes the formation of acetyl-CoA, serves several important biosynthetio pathways, including lipogenesis and cholesterogenesis. In nervous tissue, ATP citrate-lyase may be involved in the biosynthetis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] Conserved Domains cotation : 17 q21.2 lequence: Chromosome: 17; NC_000017.10 (4002317940075272, complement) Chromosome 17 · NC_000017.10 (trater 17 · NC_000017.10 (t	See related	Rosembl:ENSG00000131473: HPRD:00155: MIM:108728		General protein info	
RefSeq status REVIEWED Related sequences Organism Homo sapiens Additional links Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarohontoglires; Primates; Haplornhin; Catarihni; Hominidae; Homo Links Also known as ACL; ATPCL; CLATP Links Summary ATP oitrate lyase is the primary enzyme responsible for the synthesis of oytosolic acetyl-CoA in many tissues. The enzyme is a tetramer (relative molecular weight approximately 440,000) of apparently identical subunits. It catalyzes the formation of acetyl-CoA and oxaloacetate from oitrate and CoA with a concomitant hydrolysis of ATP to ADP and phosphate. The product, acetyl-CoA, serves involved in the biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] BioProjects Conserved Domains eseveral important biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] dbVar Conserved Domains EST EST coation : 17q21.2 (sequence: Chromosome: 17; NC_000017.10 (4002317940075272, complement) See ACLY in MapViewer Genome Chromosome 17 - NC_000017.10 Genome Genome Genome	Gene type	protein coding		Reference sequences	
Organism Homo sapiens Additional links Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarohontoglires; Primates; Haplornhini; Catarrhini; Hominidae; Homo Links Also known as ACL; ATPCL; CLATP Links Summary ATP citrate lyase is the primary enzyme responsible for the synthesis of oytosolic acetyl-CoA in many tissues. The enzyme is a tetramer (relative molecular weight approximately 440,000) of apparently identical subunits. It catalyzes the formation of acetyl-CoA and oxaloacetate from oitrate and CoA with a concomitant hydrolysis of ATP to ADP and phosphate. The product, acetyl-CoA, serves involved in the biosynthesis of acetyl-choline. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] BioProjects Costion : 17.q21.2 tequence: Chromosome: 17; NC_000017.10 (4002317940076272, complement) Costion : See ACLY in MapViewer tetare of the prime Genome Chromosome: 17. NC_000017.10 Chromosome: 17. NC_000017.10 Chromosome: 17. NC_000017.10 Genome Genome Chromosome: 17. NC_000017.10 Chromosome: 17. NC_000017.10 Genome Genome Genome Genome Chromosome: 17. NC_000017.10 Chromosome: 17. NC_000017.10 Genome Genome Genome Genome Genome Genome Genome Genome Genome<	RefSeq status	REVIEWED		Related sequences	
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo Also known as ACL; ATPCL; CLATP Summary ATP citrate lyase is the primary enzyme responsible for the synthesis of cytosolic acetyl-CoA in many tissues. The enzyme is a tetramer (relative molecular weight approximately 440,000) of apparently identical subunits. It catalyzes the formation of acetyl-CoA and oxaloacetate from citrate and CoA with a concomitant hydrolysis of ATP to ADP and phosphate. The product, acetyl-CoA, serves several important biosynthetic pathways, including lipogenesis and cholesterogenesis. In nervous tissue, ATP citrate-lyase may be involved in the biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] CDS Conserved Domains coation : 17 q21.2 eequence: Chromosome: 17; NC_000017.10 (4002317940075272, complement) equence: Chromosome: 17; NC_000017.10 (4002317940075272, complement) Chromosome 17 - NC_000017.10 [#112975+} Hot Japproximately 12075 Chromosome 17 - NC_000017.10 [#112975+] HomoloGene	Organism	Homo sapiens		Additional links	
Catarhini; Hominidae; Homo Also known as ACL; ATPCL; CLATP Summary ATP oitrate lyase is the primary enzyme responsible for the synthesis of oytosolic acetyl-CoA in many tissues. The enzyme is a tetramer (relative molecular weight approximately 440,000) of apparently identical subunits. It oatalyzes the formation of acetyl-CoA and oxaloacetate from citrate and CoA with a concomitant hydrolysis of ATP to ADP and phosphate. The product, acetyl-CoA, serves several important biosynthetic pathways, including lipogenesis and cholesterogenesis. In nervous tissue, ATP citrate-lyase may be involved in the biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] Genomic context oceation : 17 q21.2 sequence: Chromosome: 17; NC_000017.10 (40023179.40075272, complement) Chromosome 17 - NC_000017.10 [#1129751]	Lineage	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Hapl	lorrhini;		
Also known as ALC; ALFCL; CLAIP Summary ATP oitrate lyase is the primary enzyme responsible for the synthesis of cytosolic acetyl-CoA in many tissues. The enzyme is a tetramer (relative molecular weight approximately 440,000) of apparently identical subunits. It oatalyzes the formation of acetyl-CoA and oxaloacetate from citrate and CoA with a concomitant hydrolysis of ATP to ADP and phosphate. The product, acetyl-CoA, serves several important biosynthetic pathways, including lipogenesis and cholesterogenesis. In nervous tissue, ATP citrate-lyase may be involved in the biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] Genomic context cocation : 17 q21.2 equence: Chromosome: 17; NC_000017.10 (4002317940075272, complement) Chromosome 17 - NC_000017.10 [#1129751]		Catarrhini; Hominidae; Homo		Links	
Cellinitiative molecular weight approximately 440,000) of apparently identical subunits. It oatalyzes the formation of acetyl-CoA and oxaloacetate from citrate and CoA with a concomitant hydrolysis of ATP to ADP and phosphate. The product, acetyl-CoA, serves several important biosynthetic pathways, including lipogenesis and cholesterogenesis. In nervous tissue, ATP citrate-lyase may be involved in the biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] • Genomic context	Also known as	AUD; ATPUD; UDATP ATP citrate lyace is the primary enzyme responsible for the synthesis of outosplic apetyl. Coû in many tissues. The enzyme i	is a tetramer	Order cDNA clone	
oxal oacetate from citrate and CoA with a concomitant hydrolysis of ATP to ADP and phosphate. The product, acetyl-CoA, serves BioProjects several important biosynthetic pathways, including lipogenesis and cholesterogenesis. In nervous tissue, ATP citrate-lyase may be involved in the biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene. BioProjects [provided by RefSeq, Jul 2008] Conserved Domains Genomic context dbVar position 1 17 q21.2 EST equence 1 Chromosome 17 · NC_000017.10 Genome 17 · NC_000017.10 Chromosome 17 · NC_000017.10 Genome	odininary	(relative molecular weight approximately 440,000) of apparently identical subunits. It catalyzes the formation of acetyl-CoA	A and	BioAssav, by Gene target	
several important biosynthetic pathways, including lipogenesis and cholesterogenesis. In nervous tissue, ATP citrate-lyase may be involved in the biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] Genomic context boostion : 17 q21.2 equence: Chromosome: 17; NC_000017.0 (4002317940075272, complement) Chromosome 17 - NC_000017.10 [1000017.10] [1000017.10] [1000017.10] [1122751] [11		oxaloacetate from citrate and CoA with a concomitant hydrolysis of ATP to ADP and phosphate. The product, acetyl-CoA, s	serves	BioProjects	
involved in the biosynthesis of acetyloholine. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008] Conserved Domains CDDS Conserved Domains dbVar EST equence : Chromosome: 17; NC_000017.10 (40023179.40075272, complement) Chromosome 17 - NC_000017.10 (**12975*) HomoloGene		several important biosynthetic pathways, including lipogenesis and cholesterogenesis. In nervous tissue, ATP citrate-lyase i	may be	BioSystems	
Iprovided by Kerseq, Jul 2008j Conserved Domains Genomic context dbVar boation : 17 q21.2 equence : Chromosome: 17; NC_000017.10 (4002317940075272, complement) EST See ACLY in MapViewer Genome Chromosome 17 - NC_000017.10 (4123754) HomoloGene HomoloGene		involved in the biosynthesis of acetylcholine. Two transcript variants encoding distinct isoforms have been identified for this	s gene.	CCDS	
Genomic context dbVar dbVar equence : Chromosome: 17; NC_000017.10 (4002317940075272, complement) context Chromosome 17 - NC_000017.10 (41129754) (4112		(provided by Ketseq, Jul 2008)		Conserved Domains	
Control = Con	Genomic context	F.	\$ 2	dbVar	
coation : 17q21.2 Full text in PMC equence : Chromosome: 17; NC_000017.10 (4002317940075272, complement) See ACLY in MapViewer Chromosome 17 - NC_000017.10 GEO Profiles Chromosome 17 - NC_000017.10 HomoloGene	Senonic contex			EST	
equence : Chromosome: 17; NC_UUUU17.10 (400/231/9.400/527/2, complement) Chromosome 17 - NC_000017.10 Chromosome 17 - NC_000017.10 HomoloGene	ocation : 17q21.2			Full text in PMC	
Chromosome 17 · NC_000017.10 Chromosome 17 · NC_0000017.10 Chromosome 17 · NC_000017.10 Chromosome 17 ·	equence: Unromoso	me: 17; NU_000017.10 (40023179.40075272, complement) See ACLY	in MapViewer	Genome	
Chromosome 17 - NC_000017.10 [39994043] [3994043] [39994043] [39994043] [39994043] [39994043] [39994043] [39994043] [39994043] [39994043] [39994043] [39994043] [39994043] [39994043] [39940] [39994043] [3999404] [399940] [399940] [399940] [39940] [399940] [399940] [399940] [399940] [399940] [399940] [399940] [399940] [39940] [399940] [39940] [39940] [399940] [39940				GEO Profiles	
		Chromosome 17 - NC_000017.10		HomoloGene	
	ne				

Meilahti Clinical Proteomics Core Facility

🕙 ACLY ATP citrate lyas...

start

C TRANSMED

HELSINGIN YLIOPISTO

🧷 🕺 🏆 📜 Links 🖀 🔇 🗾 14.59

Entrez Gene: http://www.ncbi.nlm.nih.gov/gene/:

ACLY ATP citrate lyase [Homo sapiens] - Gene - NCBI - Mozilla Firefox				
ile Edit View History Bookmarks Tools Help				
C 🗙 🏠 C http://www.ncbi.nlm.nih.gov/gene/47			🖒 🔹 🚼 🖬 Google	P
🖉 Most Visited 📶 Customize Links 📕 Link to University's ho				
🕫 🔍 🗣 Figure 4 analyzes how mutations c 💌 Search 🐠 🕂 Facebook 🔹 🖲 Amazon 👑 YouTube	📉 Weather +	BBC BBC News -	💽 BBC Sports +	🔍 Options 🔹 💌 🔹
S ACLY ATP citrate lyase [Homo sapie 🔅				
Homologs of the ACLY gene: The ACLY gene is conserved in chimpanzee, dog, cow, mouse, rat, chicken, zebrafish, frui M.grisea, N.crassa, A.thaliana, and rice. Map Viewer (Mouse, Rat) Pathways from BioSystems ChREBP activates metabolic gene expression, organism-specific biosystem (from REACTOME) Citrate cycle (TCA cycle), organism-specific biosystem (from KEGG) E Citrate cycle (TCA cycle), conserved biosystem (from KEGG) Fatty Acid Biosynthesis, organism-specific biosystem (from REACTOME) E fatty Acid, CoA Biosynthesis, organism-specific biosystem (from REACTOME) Fatty Acid, triacylqlycerol, and ketone body metabolism, organism-specific biosystem (from REACTOME) K Integration of energy metabolism, organism-specific biosystem (from REACTOME) Metabolic pathways, organism-specific biosystem (from KEGG) Metabolism of lipids and lipoproteins, organism-specific biosystem (from REACTOME) Triglyceride Biosynthesis, organism-specific biosystem (from REACTOME) Image: Contrology Provided by GOA	t fly, mosquito, C.e	legans, S.pombe		
Function ATP binding ATP oitrate synthase activity oitrate (pro-3S)-lyase activity ligase activity metal ion binding nucleotide binding succinate-CoA ligase (ADP-forming) activity transferase activity	Evidence Code IEA IEA IEA IEA IEA IEA IEA	Pubs		
ttp://www.ncbi.nlm.nih.gov/guide/all/				0

Microsoft PowerPoint ...

KEGG: Kyoto Encyclopedia of Genes and Genomes

EGG PATHWAY Database - Mozilla Firefox	- 🗗 🔀
Elle Edit View Higtory Bookmarks Tools Help	
🕜 🗁 C 🗙 🏠 🚺 http://www.genome.jp/kegg/pathway.html 🏠 🗸 🚷 Google	P
Most Visited Customize Links	
KEGG PATHWAY Database	-
	~
KEGG2 PATHWAY BRITE DISEASE DRUG KO GENES GENOME LIGAND DBGET	
Select prefix Enter keywords	
map Organism Go Help	
Dathway Mans	
Patiway maps	
KEGG PATHWAY is a collection of manually drawn pathway maps (see new maps, change history,	
and last updates) representing our knowledge on the molecular interaction and reaction networks	
U. Global Map 1. Metabolism	
Carbohydrate Energy Lipid Nucleotide Amino acid Other amino acid Glycan	
Cofactor/vitamin Terpenoid/PK Other secondary metabolite Xenobiotics Overview	
2. Genetic Information Processing 3. Environmental Information Processing	
4. Cellular Processes	
5. Organismal Systems	
o, human Diseases	
and also on the southale relationships (Reod undy subthale maps) in:	
KECC Allos may be used to examine any of the KECC anthunay many	
Read Aulos may how be used to examine any of the Read pathway maps.	
Dathway Entries and Dathway Modules	
- damay Enalts dire i damay instants	
Pathway entries are text representation of pathway maps, containing descriptions (for a limited	
number of entries, at the moment). Pathway modules are specification of subnetworks that	
correspond to tighter functional units, each represented as a list of KO identifiers (K numbers).	
Sparch Dathway entries V for	
Pathway Mapping	
	~
lone	
🛃 Start 🔰 🕹 University of Helsinki 👌 KEGG PATHWAY Data 🖆 Students_TRANSMED 🦉 Seminar_TRANSMED	17.14

ile Edit yiew Higtory Bookmarks Tools Help Image: Second Pathway Image: Second Pathway Most Visited Customize Links Image: Second Pathway Pathway Entries and Pathway Modules Pathway entries are text representation of pathway maps, containing descriptions (for a limited number of entries, at the moment). Pathway maps, containing descriptions (for a limited number of entries, at the moment). Pathway modules are specification of subnetworks that correspond to tighter functional units, each represented as a list of KO identifiers (K numbers). Image: Search Pathway modules Pathway Mapping KEGG PATHWAY mapping is the process to map molecular datasets, especially large-scale datasets in genomics, transcriptomics, proteomics, and metabolomics, to the KEGG pathway maps for biological interpretaion of higher-level systemic functions. • Search objects in KEGG pathways • Color objects in KEGG pathways • Color objects in KEGG pathways • Color objects in KEGG pathways • Color objects in KEGG pathways • Color objects in KEGG pathways • Color objects in KEGG pathways • Color objects in KEGG pathways	
 C × A Mett Visited Customize Links Customize Links Customize Links Condentified and Pathway Modules Pathway entries are text representation of pathway maps, containing descriptions (for a limited number of entries, at the moment). Pathway modules are specification of subnetworks that correspond to tighter functional units, each represented as a list of KO identifiers (K numbers). Search Pathway modules v for Go Clear Pathway Mapping KEGG PATHWAY mapping is the process to map molecular datasets, especially large-scale datasets in genomics, transcriptomics, proteomics, and metabolomics, to the KEGG pathway maps for biological interpretaion of higher-level systemic functions. Search objects in KEGG pathways Color objects in KEGG pathways Color objects in KEGG pathways 	
Not Visited Customize Links KEGG PATHWAY Database Pathway Entries and Pathway Modules Pathway entries are text representation of pathway maps, containing descriptions (for a limited number of entries, at the moment). Pathway modules are specification of subnetworks that correspond to tighter functional units, each represented as a list of KO identifiers (K numbers). Search Pathway modules Pathway modules for Go Clear Pathway Mapping KEGG PATHWAY mapping is the process to map molecular datasets, especially large-scale datasets in genomics, transcriptomics, and metabolomics, to the KEGG pathway maps for biological interpretaion of higher-level systemic functions. Search objects in KEGG pathways Color objects in KEGG pathways O. Global Map	
KEGG PATHWAY Database * Pathway Entries and Pathway Modules Pathway entries are text representation of pathway maps, containing descriptions (for a limited number of entries, at the moment). Pathway modules are specification of subnetworks that correspond to tighter functional units, each represented as a list of KO identifiers (K numbers). Image: Search Pathway modules image: for image: Go imag	*
Pathway Entries and Pathway Modules Pathway entries are text representation of pathway maps, containing descriptions (for a limited number of entries, at the moment). Pathway modules are specification of subnetworks that correspond to tighter functional units, each represented as a list of KO identifiers (K numbers). ✓ Search Pathway modules ✓ for Go Clear Pathway Mapping KEGG PATHWAY mapping is the process to map molecular datasets, especially large-scale datasets in genomics, transcriptomics, and metabolomics, to the KEGG pathway maps for biological interpretaion of higher-level systemic functions. • Search objects in KEGG pathways • Color objects in KEGG pathways • Color objects in KEGG pathways	
Pathway entries are text representation of pathway maps, containing descriptions (for a limited number of entries, at the moment). Pathway modules are specification of subnetworks that correspond to tighter functional units, each represented as a list of KO identifiers (K numbers). Search Pathway modules for Go Clear Pathway Mapping KEGG PATHWAY mapping is the process to map molecular datasets, especially large-scale datasets in genomics, transcriptomics, and metabolomics, to the KEGG pathway maps for biological interpretaion of higher-level systemic functions. Search objects in KEGG pathways Color objects in KEGG pathways	
 Search Pathway modules for Go Clear Pathway Mapping KEGG PATHWAY mapping is the process to map molecular datasets, especially large-scale datasets in genomics, transcriptomics, proteomics, and metabolomics, to the KEGG pathway maps for biological interpretaion of higher-level systemic functions. Search objects in KEGG pathways Color objects in KEGG pathways 	
Pathway Mapping KEGG PATHWAY mapping is the process to map molecular datasets, especially large-scale datasets in genomics, transcriptomics, proteomics, and metabolomics, to the KEGG pathway maps for biological interpretaion of higher-level systemic functions. • Search objects in KEGG pathways • Color objects in KEGG pathways • Color objects in KEGG pathways	
KEGG PATHWAY mapping is the process to map molecular datasets, especially large-scale datasets in genomics, transcriptomics, proteomics, and metabolomics, to the KEGG pathway maps for biological interpretaion of higher-level systemic functions. Search objects in KEGG pathways Color objects in KEGG pathways O. Global Map	
0. Global Map	
12 2022-002018 2013	
0.1 Metabolism	
Metabolic pathways [zoom out] Launch KEGG Atlas Biosynthesis of secondary metabolites [zoom out] Launch KEGG Atlas	
1. Metabolism	
1.1 Carbohydrate Metabolism	
Glycolysis / Gluconeogenesis Enzymes Ctrate cvde (TCA cvde) Compounds with biological roles Pentose phosphate pathway Compounds with biological roles Pentose and glucuronate interconversions Fructose and mannose metabolism Galactose metabolism Galactose metabolism	
Ascorbate and augrate metabolism Chareb and evence metabolism Pe	
Start 🕘 University of Helsinki 🔮 KEGG PATHWAY Data 🗁 Students_TRANSMED 🎕 Seminar_TRANSMED	~

Meilahti Clinical Proteomics Core Facility

BIOMEDICUM HELSINKI

Reactome: pathways

Done

BIOMEDICUM HELSINKI

http://mimi.ncibi.org/MimiWeb/main-page.jsp

BIOMEDICUM HELSINKI

Acetyl-CoA (C00024) network (view in MetScape)

Lists of compound reactions

Reactions	s compound participates in ((97 reacti	ons found) - show/hide]				
97 reactions found [First/Prev] 1 , <u>2</u> , <u>3</u>	d, displaying page 1 of 5. 3, 4, <u>5 [Next/Last]</u>								
R00209 Pyrivate	ion e metabolism	Reversible?	Equation pyruvate + coenzyme a + nad = acetyl-roa + carbon dioxide + nadb2						
R00210 Glycolys	sis / Gluconeogenesis	false	pyruvate + coanzyme a + nado = acetyl-coa + carbon dioxida + nadoh2						
R00227 Pyruvate	e metabolism	false	<u>acetyl-coa</u> + <u>water</u> = <u>coenzyme a</u> + <u>acetate</u>						
<u>R00234</u>		true	<u>acetyl-coa</u> + <u>peptide</u> = <u>coenzyme a</u> + <u>nalpha-acetylpeptide</u>						
R00235 Glycolys	sis / Gluconeogenesis	false	<u>adenosine 5'-triphosphate</u> + acetate + coenzyme <u>a</u> = <u>adenosine 5'-monophosphate</u> + <u>pyrophosphate</u> + <u>ace</u>	<u>tyl-coa</u>					
R00236 Pyruvate	e metabolism	false	<u>acetyl adenylate + coenzyme a</u> = adenosine 5'-monophosphate + <u>acetyl-coa</u>						
R00238 Fatty aci	id metabolism	true	2 <u>acetyl-coa</u> = <u>coenzyme a</u> + <u>acetoacetyl-coa</u>						
R00259 Urea cyc	cle and metabolism of amino groups	false	<u>acetvi-coa</u> + glutamic acid = <u>coenzvme a</u> + <u>n-acetvi-i-glutamate</u>						
R00351 Citrate c	cycle (TCA cycle)	false	<u>citrate + coenzyme a</u> = acetyl-coa + water + oxaloacetate	1.03	MICHIGAN	MOLECI			
R00352 Citrate c	cycle (TCA cycle)	false	<pre>adenosine 5'-triphosphate + citrate + coenzyme a = adenosine 5'-diphosphate + orthophosphate + acetyl- adenosine 5'-diphosphate + citrate + coenzyme a = adenosine 5'-diphosphate + orthophosphate + acetyl- adenosine 5'-triphosphate + citrate + coenzyme a = adenosine 5'-diphosphate + orthophosphate + acetyl- adenosine 5'-triphosphate + citrate + coenzyme a = adenosine 5'-diphosphate + orthophosphate + acetyl- adenosine 5'-diphosphate + citrate + coenzyme a = adenosine 5'-diphosphate + orthophosphate + acetyl- adenosine 5'-diphosphate + citrate + coenzyme a = adenosine 5'-diphosphate + orthophosphate + acetyl- adenosine 5'-diphosphate + citrate + coenzyme a = adenosine 5'-diphosphate + orthophosphate + acetyl- adenosine 5'-diphosphate + citrate + coenzyme a = adenosine 5'-diphosphate + orthophosphate + acetyl- adenosine 5'-diphosphate + citrate + coenzyme a = adenosine 5'-diphosphate + orthophosphate + acetyl- adenosine 5'-diphosphate + citrate + coenzyme a = adenosine 5'-diphosphate + orthophosphate + acetyl- adenosine 5'-diphosphate + citrate + coenzyme a = adenosine 5'-diphosphate + orthophosphate + acetyl- adenosine 5'-diphosphate + citrate + coenzyme a = adenosine 5'-diphosphate +</pre>	Free Text Se	arch List Search Qu	ery Interactions	4iMI Help		NCIDI
<u>R00371</u> Glycine,	serine and threonine metabolism	false	<u>acetyl-coa</u> + glycine = <u>coenzyme a</u> + 12-amino-3-oxobutanoate	• Reaction	n Details				
R00705 Inositol r	metabolism	talse	3-oxopropanoate + coenzyme a + nad = acetyl-coa + carbon dioxide + nadh2 + h+	Reaction Descrip	otion:	Subcellula	r Locations:		
K00706 Inositol r	metabolism	false	3-oxopropanoate + coenzyme a + nadp = acetyl-coa + carbon dioxide + nadph2 + n+	Fatty acid metaboli:	sm 🛛 🗸	3.0			
800742 Tetracyc	cline hiosynthesis	false	adenosine 5'-trinhosobate + aretyl-roa + bro3-icarbonate = adenosine 5'-dinbosobate + orthophosobate	ReactionID:	N			mitochondrial envelope	
iter in the second	enne bros finnesis	1919 4		R00238 View React	on in KEGG	2.5			
R00829 Benzoate	e degradation via hydroxylation	false	succinyl-coa + acetyl-coa = coenzyme a + 3-oxoadipyl-coa	Reversible:		2.0		mitochondrion	
				true					
R00927 Valine, le	eucine and isoleucine degradation	false	propanoyl-coa + acetyl-coa = coenzyme a + 2-methylacetoacetyl-coa	Reaction Text:		1.5		cytoplasm	
				2 C00024=C00010	+C00332	1.0		peroxisome	
				Equation:		0.5	1 2	3 4	
				2 Acetyl-CoA=CoA+	Acetoacetyl-CoA				
				Enzymes for Rea	iction:				
				2.3.1.16 2.3.1.9					
				Genes for Reacti	on:				
				ACAA1 HADHB ACA	A2 ACAT1 ACAT2				
				Compound	Is in reaction (3 compounds	s found) - <u>show/hide</u>			

AmiGO: http://geneontology.org

😂 AmiGO: Gene Product Search Results - Mozilla Firefox
Eile Edit View History Bookmarks Iools Help
🕜 🕞 🗸 🏠 🔥 🔥 🔥 👔 🖓 amigo.geneontology.org/cgi-bin/amigo/search.cgi?session_id=8648amigo1317651794&search_query=ACLY 🏠 - 🔀 - amigo gene ontology
🙍 Most Visited 📶 Customize Links 🔤 Link to University's ho
(ii) Q • Search 15 + Facebook • Amazon 💥 YouTube 📉 Weather • 🔤 BBC News • 😭 BBC Sports • So Options • >>
🗋 University of Helsinki_Research Progra 🔯 🗧 ACLY ATP citrate lyase [Homo sapiens] 🔯 🔥 ACLY ATP citrate lyase [Homo sapiens] 🔯
the Gene Ontology AmiGO
Search Browse BLAST Homolog Annotations Tools & Resources Help
Search GO ACLY OGO terms
Gene Product Search Results
12 results for ACLY in genes or proteins fields symbol, full name(s) and synonyms ▼ Filter search results Filter Gene Products Gene Product Type Data source Species All Complex gene groduct ♥ CGD ♥ All Aspec DL Aspec DL Aspec DL CGD ♥ Complex Index All Aspec JL Aspec JL A

Results are sorted by **relevance**. To change the sort order, dick on the column headers.

stan

ACLY Homo sapiens P...

💐 Seminar TRANSMED

🛃 🛂 📮 Links

<)85

Gene Ontology annotation: http://www.ebi.ac.uk/GOA/

	🕹 ACLY Homo sapiens P53396	- Mozilla Firefox						
	<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookma	rks <u>T</u> ools <u>H</u> elp						
	🚱 🗩 C X 🏠 🛽	http://www.ebi.ac.uk/QuickGO	/GProte	ein?ac=P533	396	🔊 🕁 🔸	-	Google 🔎
	🙍 Most Visited 📶 Customize Links	Link to University's ho						
	0 9.	Search 🜆 🔶	💽 Fa	acebook +	🖲 Amazon 🚟 YouTube 📉 V	Veather 🔹 🔤 BBC News 🔹 💽 BBC :	õports +	🔍 Options 🔸 ⋗ 🔸
	University of Helsinki_Research Pro	gra 🔄 🔗 ACLY ATP citrate I	yase [H	Homo sapien	s] 🔯 🚯 ACLY Homo sapi	ens P53396 🛛 😣 🐳		-
		alkyl on transfer						4
Gene	UniProtKB P53396 ACLY	GO:0046912 transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer	F	IEA	InterPro2GO	InterPro:IPR016143	9606	20111001 InterPro
Ontology					Component			
Ontology.	UniProtKB P53396 ACLY	<u>GO:0005634</u> nucleus	C	IDA	PMID:18029348		9606	20101115 HPA
component	UniProtKB P53396 ACLY UniProtKB P53396 ACLY	<u>GO:0005737</u> cytoplasm <u>GO:0005737</u> cytoplasm	С	IEA	Swiss-Prot Keywords2GO	SP_KW:KW-0963	9606 9606	20111001 InterPro 20111001 UniProtKB
•	UniProtKB P53396 ACLY	<u>GO:0005737</u> cytoplasm	С	IEA	Subcellular Location2GO	SP_SL:SL-0086	9606	20111001 UniProtKB
	UniProtKB P53396 ACLY	<u>GO:0005737</u> cytoplasm	С	IDA	PMID:18029348		9606	20101115 HPA
	UniProtKB P53396 ACLY	GO:0005739 mitochondrion	C	IEA	Compara	Ensembl:ENSMUSP000001030	129606	20111001 ENSEMBL
	UniProtKB P53396 ACLY	<u>GO:0005829</u> cytosol	C O	TAS	Reactome:REACT_1141		9606	20040609 Reactome
	UniProtKBP53396 ACLY UniProtKBP53396 ACLY	<u>GO:0009346</u> citrate lyase	C	TAS	PMID:1371749		9606	20040609 Reactome 20030904 PINC
	UniProtKB P53396 ACLY NOT	complex <u>GO:0005730</u> nucleolus	С	IDA	PMID:18029348		9606	20101115 HPA
	Please send comments, suggestio	ns or bug reports to <u>goa@ebi</u> act <u>EBI</u> © European Bioinfor	.ac.uk matics	Click he Click he Institute 2	re for details of how to cite U 011. EBI is an Outstation of th	IniProtKB-GOA and QuickGO. e <u>European Molecular Biology Labo</u>	oratory.	

Gene Ontology annotation: http://www.ebi.ac.uk/GOA/

]☆ - <mark>8</mark> - 6	ioogle
וֹיָר אַ ר	ionale
	cerechtes.
BBC Sports •	🔍 Options 🔸 💈
+	
Taxor	iDate Assigned F By F II
9606	20030904 PINC
9606	20110610 Reactome
9606	20030904 PINC
9606	20111001 InterPro
9606	20111001 InterPro
9606	20111001 InterPro
9606	20111001 UniProtKB
9606	20030904 PINC
9606	20040609 Reactome
9606	20110610 Reactome
	 Taxor 9606

Gene Ontology: process

Meilahti Clinical Proteomics Core Facility HELSINGEORS UNIVERSITET

HELSINGIN YLIOPISTO

UNIVERSITY OF HELSINKI

Gene Cards: http://www.genecards.org/

Gene Cards: aliases and descriptions

🥹 ACLY Gene - GeneCards	ACLY Protein ACLY Antibody - Mozilla	a Firefox				<
<u>File E</u> dit <u>V</u> iew History Book	marks <u>T</u> ools <u>H</u> elp					
🔇 🖸 - C 🗙 🏠	http://www.genecards.org/cgi-bin/carddisp	o.pl?gene=ACLY&search=ACLY		☆ - Google	Ļ	5
Most Visited 📶 Customize Links	Link to University's ho					
Q.	Search 💋 🔶 🛃 Facebo	ook 🔹 🦲 Amazon 🚟 YouTube	📉 Weather + 🔤 BBC News +	BBC Sports +	🔍 Options 🔹 💌	•
🜃 ACLY Gene - GeneCards A	CLY Prote +					Ŧ
Jump to Section 💌	Aliases & Descriptions					~
Aliases & Descriptions for ACLY gene	ATP citrate lyase ¹² ATP-citra ACL ¹²³ EC 2.3.3 ATPCL ¹² OTTHUM	te (pro-S-)-lyase ^{2 3} 8 ^{3 8} P00000164773 ²				
(According to ¹ <u>HGNC,</u> ² <u>Entrez Gene,</u> ³ UniPrott/B/Swiss Prot	CLATP ¹² ATP citra Citrate cleavage enzyme ²³ ATP-citra	te synthase ² te synthase ²				
⁴ UniProtKB/TrEMBL, ⁵ OMIM, ⁶ GeneLoc, ⁷ Ensembl, ⁸ DME, and/or ⁹ miRBase) About This Section	External Ids: HGNC: 115 ¹ Entrez G Export aliases for ACLY gene to outside Previous GC identifers: GC17M039579 G	iene: 47 ² Ensembl: ENSGO databases c17M042174 GC17M039931	0000131473 ⁷ UniProtKB: F GC17M040396 GC17M0372	276 GC17M035785		
Jump to Section Summaries for ACLY gene (According to Entrez Gene, Tocris Bioscience, Wikipedia's Gene Wiki, UniProtKB/Swiss-Prot, and/or UniProtKB/TrEMBL) About This Section	Entrez Gene summary for ACLY: ATP citrate lyase is the primary e enzyme is a tetramer (relative mo the formation of acetyl-CoA and o phosphate. The product, acetyl-C cholesterogenesis. In nervous tiss transcript variants encoding distin UniProtKB/Swiss-Prot: ACLY_HUMAN Function: ATP citrate-lyase is th tissues. Has a central role in de n acetylcholine	nzyme responsible for the sy lecular weight approximately xaloacetate from citrate and oA, serves several important sue, ATP citrate-lyase may b ct isoforms have been identifi <u>.P53396</u> e primary enzyme responsibl iovo lipid synthesis. In nervou	nthesis of cytosolic acetyl-C 440,000) of apparently identi CoA with a concomitant hydr biosynthetic pathways, inclu a involved in the biosynthesis ed for this gene. (provided by e for the synthesis of cytosol s tissue it may be involved in	oA in many tissues. The cal subunits. It catalyzes rolysis of ATP to ADP and ding lipogenesis and s of acetylcholine. Two r RefSeq) lic acetyl-CoA in many n the biosynthesis of	1	
Done						~
	e - GeneCa 📴 TRANSMED	Microsoft PowerPoint		🧷 😡 🍳 🌷 Links " 🔇	V 🖉 🛒 🏷 10.01	

Gene Cards: compounds for ACLY

ACLY Gene - GeneCards /	ACLY Protein ACLY An	tibody - Mozilla Firefox							- 🔀
			7.52.950						
	http://www.genecards.	.org/cgi-bin/carddisp.pl?gene=AC	LY8sear	rch=ACLY			Google		P
🙍 Most Visited 🌃 Customize Links	Link to University's ho								
0 Q.	Search 🕼	🦻 🔶 🚮 Facebook + 🧕 Ar	nazon	🚟 YouTube 📉 Weat	her 🔹 📧 B	BC News +	BBC Sports +	🔍 Options ,	»» •
ACLY Gene - GeneCards Al	CLY Prote +								-
Aldrich, Tocris Bioscience, HMDB, and/or <u>Novoseek</u> and	7 HMDB Compounds fo	or ACLY							
DrugBank, Enzo Life	Compound	Synonyms			CAS #	PubMed I	ls		
Sciences PharmGKB, and/or	ADP	adenosindiphosphorsaeure	(see a	<u>nii 8</u>)	58-64-0				
TarThera)	Acetyl-CoA	S-Acetyl coenzyme A (<u>see</u>	e all 13)		72-89-9]			
About this section	<u>Adenosine triphosphate</u>	5'-(tetrahydrogen triphosph	ate) Ac	denosine (<u>see all 24</u>)	56-65-5	-+			
	<u>Citric acid</u>	2-Hydroxy-1,2,3-propanetri	carbox	ylate (<u>see all 20</u>)	77-92-9				
	<u>Coenzyme A</u>	Acetoacetyl coenzyme A s	sodium	salt (<u>see <i>all</i> 21</u>)	85-61-0	<u> </u>			
	Oxalacetic acid	2-Ketosuccinate (<u>see all 20</u>)		328-42-7				
	Phosphate	NFB Orthophosphate (<u>see</u>	<i>all 13</i>)		14265-44-2	2			
	n s				(
	10/28 Novoseek	chemical compound rel	Hite	hips for <u>ACLY</u> gene RubMod IDs for Ar	ticlos with	<u>Sharod So</u>	ntancas (# contancos	4	
	bydrovycitrate	-i0g (F-Val) 91		17476502 (1) 11319	1829 (1) 20	1372858 (1)	mences (# semences	<u> </u>	
	(-)-hydroxycitrate	89.1	3	<u>17476080 (1), 11101</u> 2176080 (1), 111014	169 (1)	<u>3372030</u> (1)		-	
	acetyl-coa	84	26	14681844 (2), 82076	83 (1), 791	1658 (1), 11	171136 (1) (see all 21)	-	
	citrate	77.7	31	17928289 (2), 17651	00 (2), 820	07683 (1), 98	20262 (1) (see all 21)	-	
	oxaloacetate	69.9	7	7669753 (2), 111711	37 (1), 167	75605 (1), 18	922930 (1)	-	
	phosphohistidine	69.2	2	<u>1371749</u> (1)					
	pyruvate	62.2	14	<u>8999918</u> (3), <u>179282</u>		171136 (1), <u>7</u>	<u>616129</u> (1) (<u>see all 10</u>)		
	fatty acid	62.1	26	<u>10410463</u> (3), <u>89999</u>	9 <u>18</u> (3), <u>158</u>	369874 (1), <u>1</u>	7476502 (1) (see all 15	0	
	<u>6-phosphogluconate</u>	60.9	2	<u>14605988</u> (1), <u>83555</u>	<u>62</u> (1)				
	<u>3-hydroxy-3-methylgluta</u>	ir <u>yl-coa</u> 57.8	7	<u>8999918</u> (2), <u>18774</u> 9	9 <u>44 (</u> 1), <u>193</u>	3 <u>89950</u> (1)			
	About this table							-89	~
Done									
🥙 ACLY Gene	e - GeneCa 🔁 TRANSI	MED 📴 Microso	oft Powe	erPoint		ا هج	🐙 🛛 🛱 Links » 🄇		10.03

Gene Cards: expression in tissues and disease

OMIM: www.ncbi.nlm.nih.gov/omim

🕹 ATP CITRATE LYASE; ACLY - O	OMIM Result - Mozilla Firefox			
<u>File E</u> dit <u>Y</u> iew Hi <u>s</u> tory <u>B</u> ookmar	rks <u>T</u> ools <u>H</u> elp			
🔇 💽 - C 🗙 🏠 💈	3 http://www.ncbi.nlm.nih.gov/omim/?term=	ACLY	🟫 🚽 🚷 🖬 omim.org	P
🔊 Most Visited 🌃 Customize Links	Link to University's ho			
0 Q·	Search 💋 🔶 🕂 Facebo	ook 🔹 🧕 Amazon 👑 YouTube 📉 Weather 🔹 🔤	BBC News 🔹 💽 BBC Sports 🔹	🔍 Options 🔹 💌 🔹
S ATP CITRATE LYASE; ACLY - OM	1IM Re +			
S NCBI	Online Mendelian Inheritance in	Man Johns University		My NCBI 🛛 🖄
All Databases PubMed Search OMIM	Nucleotide Protein Genome for ACLY	Structure PMC OMIM Go Clear <u>Save Search</u>		
Limits Preview/Index History	Clipboard Details			
Display Detailed	🖌 Show 20 💉 Send to 💌			
All: 1 OMIM UniSTS: 1 OMIM db5	SNP: 0 🔀			
MIM ID *108728		MGI, Links	Table of Contents	
ATP CITRATE LYASE; ACLY				
Alternative titles; symbols			Description	
CLATP			Cloning Gene Function	
ATPCL			Mapping	
ACL			References Contributors	
Gene map locus: <u>17q21.1</u>			Creation Date Edit History	
Description		Back to Top		
ATP citrate lyase is the primary e	enzyme responsible for the synthesis of	cytosolic acetyl-CoA in many tissues. The	Links	
enzyme is a tetramer (relative m	iolecular weight approximately 440,000) of apparently identical subunits. It I CoA with a concomitant hydrolysis of ATP to	Selected Gene Related Links	
ADP and phosphate. The product	t, acetyl-CoA, serves several important	biosynthetic pathways, including lipogenesis	G Entrez Gene	
and cholesterogenesis. In nervou	us tissue, ATP citrate-lyase may be invo	olved in the biosynthesis of acetylcholine. ${f arghi}$	RefSeg	
Cloping		Back to Tan	G GenBank	
cioning		Each o top	P Protein	
Cloning of cDNAs has been repor	rted for murine (<u>Sul et al., 1984</u>), rat (<u>E</u>	ilshourbagy et al., 1990), and human		
(Elshourbagy et al., 1992) ATP ci	trate lyase. <u>Elshourbagy et al. (1992)</u> f	ound that the subunits of the enzyme have	BioSystems	
amino acid identity 💡	ed molecular mass of 121,419 Da. me	Human and fat AFFCE CDNAS SHOWED 90.3%	GEO Profiles	
			Gene Genotype	
Gene Function		Back to Top	GeneView in dbSNP HomoloGene	~
Done				
🯄 start 🛛 🔮 ATP CITRATE	: LYASE; 🗁 TRANSMED	Microsoft PowerPoint	🧷 😨 🏆 Links " 🍫	🔽 🗊 🛒 😵 10.12

ChEBI: Chemical Entities of Biological Interest

www.hmdb.ca/

HMDB: Human Metabolome Database

	Browse	Search	About	Downloads	Contact
					<u>ه</u>
luman Meta	abolome Datab	ase Version 3.0			
Search: A	CLM	Search type:	Metabolites 👻 Sea	rch [Advanced]	
data fields are hyperi viewing applets. The I <u>DrugBank, T3DB, SM</u> metabolites, <u>T3DB</u> cc and disease pathway HMDB is supported t	Initial with 2/5 of the information inked to other databases (KE HMDB database supports ex <u>MPDB</u> and <u>FooDB</u> are also pro- ontains information on 3100 of ys, while <u>FooDB</u> contains equi- by <u>David Wishart</u> , Department rited by <u>The Metabolomics In</u> and cutting-edge technologi	GG, PubChem, MetaCyc, Cl densive text, sequence, chem art of the HMDB suite of datat common toxins and environme uivalent information on ~28,00 nts of <u>Computing Science</u> & <u>B</u> <u>novation Centre</u> , a Genome C ies in metabolomics.	EBI, PDB, Swiss-Prot, and lical structure and relational lical structure and relational lical structure and relational lical sciences, <u>DrugBank</u> contains e intal pollutants, <u>SMPDB</u> cor 0 food components and food licological Sciences, <u>Universit</u> anada-funded core facility se	GenBank) and a variety of stru- query searches. Four addition- quivalent information on ~1600 trains pathway diagrams for 44 additives. <u>y of Alberta</u> .	al databases, drug and drug 0 human metabo and industry wit
HMDB is also suppo world-class expertise What's New?					
HMDB is also suppo world-class expertise What's New? Latest					
HMDB is also suppo world-class expertise What's New? Latest September 15, 2012 • The release been archive	2 <u>e notes</u> for version 3.0 of the red.	Human Metabolome Databa	se are now available. Additi	onally, version 2.5 of the HMD	DB downloads h

Home	Bro	wse Search	About	Downloads	Contact Us
uman Mo		e Database Version 3.0 Search	type: Proteins 💌	Search [Advanced]	hmp
ilter metabolites	s by status:	Sea Proteins search	for "ACLY" returned 2 results	Expected and not quantified	Apply Clear Filter
<u>niprot ID</u> ≑	<u>Gene Name</u> Locus	Name	<u>Туре</u> ♦	Metabolites	
53396	ACLY 17q21.2	ATP-citrate synthase	Enzyme	Acetyl-CoA Oxalacetic acid Citric acid Coenzyme A Adenosine triphosphate ADP	
EnzymeCard				Phosphate	

Showing metabocard for Acetyl-CoA (HMDB01206)

egend: metabolite	field enzyme field	Show XML	Show Similar Structure										
Record Information	n												
Version	3.0												
Creation Date	2005-11-16 08:48:42 -0700												
Update Date	2009-05-05 14:58:35 -0600	2009-05-05 14:58:35 -0600											
Accession Number	HMDB01206	HMDB01206											
Secondary Accession Numbers	None												
Metabolite Identific	cation												
Common Name	Acetyl-CoA												
Description	The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia) acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.												
Structure	ت کو میں میں میں میں میں کو												
Synonyms	1. S-Acetyl coenzyme A 2. S-acetate CoA 3. S-acetate Coenzyme A 4. ac-CoA 5. ac-Coenzyme A 6. ac-S-Coenzyme A 8. acetyl coenzyme A 9. acetyl-CoA 10. acetyl-S-Coenzyme A 11. acetyl-S-Coenzyme A 13. acetyl-S-Coenzyme A 13. acetyl-S-Coenzyme A												
Chemical Formula	C ₂₃ H ₃₈ N ₇ O ₁₇ P ₃ S												

InChI Key	InChIKey=ZSLZBFCDCINBPY-ZSJPKINUSA-N
Chemical Taxonor	ny
Kingdom	Organic Compounds
Super Class	Lipids
Class	Fatty Acid Esters
Sub Class	Acyl CoAs
Other Descriptors	Aromatic Heteropolycyclic Compounds
outer beschptore	acyl-CoA(ChEBI)
	1 Phosphoribosyl Imidazole
	Aminopyrimidine
	Carboxamide Group
	Carboxylic Thioester
	Coenzyme A
	Glycosyl Compound
	Imidazole
	Imidazopyrimidine
	Monosaccharide Phosphate
	N Glycosyl Compound
	Organic Hypophosphite
Substituents	Organic Phosphite
	Organic Pyrophosphate
	Oxolane
	Pentose Monosaccharide
	Phosphoric Acid Ester
	Purine
	Purine Ribonucleoside 3',5' Bisphosphate
	Pyrimidine
	Saccharide
	Secondary Alcohol
	Secondary Carboxylic Acid Amide
	Thiocarboxylic Acid Ester
Direct Parent	Acyl CoAs
Ontology	
Status	Detected and not quantified
Origin	Endogenous
Singin	Food
	Cell signaling
	Component of Alapino and acoustate motobolism

	nucleus												
	peroxisome												
Biofluid Locations	Not Available												
	Adipose Tissue												
	Brain												
	Muscle												
Tissue Location	Platelet												
	Prostate												
	Skeletal Muscle												
	Spleen												
	Name	SMPDB Link	KEGG Link										
	Amino Sugar Metabolism	SMP00045	map00520 &										
	Beta Oxidation of Very Long Chain Fatty Acids	SMP00052	map01040 &										
	Beta-Alanine Metabolism	SMP00007	map00410 &										
	Butyrate Metabolism	SMP00073	map00650 &										
	Citric Acid Cycle	SMP00057	map00020 &										
	Ethanol Degradation	SMP00449	Not Available										
	Fatty Acid Biosynthesis	SMP00456	Not Available										
	Fatty acid Metabolism	SMP00051	map00071 &										
	Glycine and Serine Metabolism	SMP00004	map00260 @										
Dethurous	Ketone Body Metabolism	SMP00071	map00072 🗗										
Pathways	Lysine Degradation	SMP00037	map00310 🗗										
	Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids	SMP00482	Not Available										
	Mitochondrial Beta-Oxidation of Medium Chain Saturated Fatty Acids	SMP00481	Not Available										
	Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids	SMP00480	Not Available										
Pathways	Oxidation of Branched Chain Fatty Acids	SMP00030	Not Available										
	Phytanic Acid Peroxisomal Oxidation	SMP00450	Not Available										
	Propanoate Metabolism	SMP00016	map00640 &										
	Pyruvate Metabolism	SMP00060	map00620 &										
	Steroid Biosynthesis	SMP00023	map00100 &										
	Transfer of Acetyl Groups into Mitochondria	SMP00466	Not Available										
	Valine, Leucine and Isoleucine Degradation	SMP00032	map00280 &										
Normal Concentra	tions												
	Not Available												
Abnormal Concen	trations												
	Not Available												
Associated Disorde	ers and Diseases												

Beta Oxidation of Very Long Chain Fatty Acids SMP0052; http://pathman.smpdb.ca/

LOGIN | Why Login? | Create New Account

Quick Search Gene Search

BioCyc Database collection

www.biocyc.org

Collection of 3563 Pathway/Genome databases. Each database describes the genome and pathways of a single organism.

Tier 1: literaturebased curation Tier 2 and Tier 3: computational

HumanCyc: 250 pathways MetaCyc: 2202 pathways from 2063 organisms BIOCYC atabase collection Pathway Tools FBA Tutorial discounted registration end Sept 19, 2014

Sites ▼ Search ▼ Genome ▼ Metabolism ▼ Analysis ▼ SmartTables ▼ Help ▼

BioCyc Database Collection

BioCyc is a collection of 3563 Pathway/Genome Databases (PGDBs), with tools for understanding their data.

Getting Started

New to BioCyc? Typical usage is:

- Select one or more databases (genomes) to search. To do so, click "change organism database" in the box in the top right of every page. By default, BioCyc searches *Escherichia coli* K-12 substr. MG1655.
- Search for a gene or pathway using the Quick Search, or see the Search menu for more options.

New User Guide >>

Enter a gene, protein, metabolite or pathway..

Searching Escherichia coli K-12 substr. MG1655 change organism database

Install Pathway Tools Locally to Analyze Sequenced Genomes

Install SRI's Pathway Tools software locally to predict metabolic pathways from sequenced genomes, generate metabolic models, and analyze omics data.

Learn More

Meilahti Clinical Proteomics Core Facility

BioCyc Database collection: example TCA (human)

BIOMEDICUM HELSINKI

ChemSpider: the free chemical database

http://www.chemspider.com/

ChemSpider: the free chemical database

	🕹 ChemSpider Citrate C6H5O7 - Mozilla Firefox	- 7						
	Eile Edit View Higtory Bookmarks Iools Help							
	🕜 💽 👻 🔂 💢 http://www.chemspider.com/Chemical-Structure.29081.html?rid=5e110d65-ed06-4ff1-83ce-b2df5dd6fd0d 🛛 🖓 🚽 🚷 chemspider 🔎							
	🔯 Most Visited 📶 Customize Links 📃 Link to University's ho							
	📵 🔍 • Biosynthesis of unsaturated fatty 💌 Search 🐼 🚸 💽 Facebook • 🖲 Amazon 🞇 YouTube 📉 Weather • 🔤 BBC News • 😭 BBC Sports •	• Options • 꽏 •						
	hmp HMDB: Showing Acetyl-CoA (HMDB01 💿 💢 ChemSpider Citrate C6H507 😰 🔗 Mining metabolites: extracting the ye 💿 📉 Mail :: Inbox	· + ×						
	P - Charge	Register for Our Webinar Series						
	Names and Identifiers	Gaccelrys*						
	ChemSpider Searches							
http://www.chemspider.com/	▶ Properties	YOU COULD ADVERTISE						
	▶ Spectra	HERE 🖛						
	► CIFs							
	► Articles	DIONEX Part of Thermo Fisher Scientific						
	► Data Sources							
	▶ Patents	Also from the RSC						
	RSC Databases	BE DISCOVERED						
	▶ Pharmacological Links	chemistry world Jobs						
	► SimBioSys LASSO	Generate Leads						
	Done							
	🛃 Start 📁 TRANSMED 💿 Microsoft PowerPoint 🥹 ChemSpider Citrate 🍱 Editor - Photoshop El 🧷 👰 🧟	🖞 Links 🎽 🔇 🟹 🥵 11.27						

BIOMEDICUM HELSINKI

Unpredictability of metabolism--the key role of metabolomics science in combination with next-generation genome sequencing

Weckwerth W. Anal Biochem Chem. 2011 Jun;400(7):1967-78.

Unpredictability of metabolism--the key role of metabolomics science in combination with next-generation genome sequencing

Overall strategy combining full-scan mass spectrometry analyses of metabolites and targeted analysis. Physiological markers are identified in HTP-manner with MRM MS technology. Integrative approach combining genome sequencing, dynamic modeling and *omics* analysis. EFMelementary flux models, FBA- flux balance analysis MCA-metabolic control analysis.

MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks

Cotrett L. et al., Nucleic Acid Res. 2010 Jul;38 (Web Server issue):W132-7.

Network medicine approaches to the genetics of complex diseases

Silverman E. et al., Discovery Medicine 2012, 14(75):143-152.

Meilahti Clinical Proteomics Core Facility

Rapidly improved determination of metabolites from biological data sets using the high-efficient TransOmics software tool

The detailed information for identification of metabolites by TransOmics software online

BIOMEDICUM HELSINKI

Compound	Neutral mass	m/z	2	Retention time	Peak Width	Accepted ID	Identifications	Anova (p)	Max fold change	Highest mean	Lowest mean	Tag	•	Isotope distribution	Max Abundance	Min CV%	Description	
4.85_191.1145m/z	<unknown></unknown>	191.1145	2	4.86	0.08		1	0.00295	2.6	Model	Control				647.2017	45.74		
4.91_220.0010m/z	<unknown></unknown>	220.0010	1	4.91	0.10		1	0.41	1	Control	Model				966.7981	51.82		
\$ 5.09_215.1187m/z	<ur><unknown></unknown></ur>	215.1187	2	5.09	0.07		1	0.677	1.07	Control	Model				294.0438	28.65		
4.79_231.0754m/z	<unknown></unknown>	231.0754	1	4.79	0.08		1	0.193	6.31	Model	Control				403.8447	31.41		
4.79_203.0794m/z	<ur>kunknown></ur>	203.0794	1	4.79	80.0		1	0.675	9.94	Model	Control	۲			241.9278	48.81		
\$ 4.84_254.0571n	254.0571	277.0469	1	4.84	0.10		1	0.39	1.16	Control	Model	۲			2378.6927	23.17		
5.18_268.0694m/z	<ur>kunknown></ur>	268.0694	2	5.38	0.15		1	6.38-05	3.18	Control	Model	۲			2662.4642	36.48		
5.81_238.0083m/z	<unknown></unknown>	238.0083	1	5.81	0.04		1	0.352	1.24	Model	Control	۲			238.0212	50.46		
5.84_288.0626m/z	<unknown></unknown>	288.0626	2	5.84	0.06		1	0.348	1.24	Control	Model	۲			678.9418	44.36		
5.94_313.1112m/z	<unknown></unknown>	313.1112	1	5.94	0.09		1	0.148	1.96	Model	Control				993.7521	36.32		
> 5.26_300.0834m/z	<unknown></unknown>	300.0834	1	5.26	80.0		1	0.274	1.66	Control	Model	۲			640.7929	39.32		
5.77_243.0989m/z	<unknown></unknown>	243.0989	1	5.77	0.15		1	0.0293	3.42	Model	Control				2342.7042	58.72		
5.78_291.1306m/z	<unknown></unknown>	291.1306	1	5.78	0.06		1	0.000858	1.44	Control	Model				565.3010	16.54		
4.78_220.0106m/z	<unknown></unknown>	220.0106	1	4.78	0.13		1	4.468-05	6.42	Control	Model				2608.7112	59.02		
3.88_258.0839m/z	<unknown></unknown>	258.0839	1	3.88	0.04		1	0.0252	1.92	Model	Control				219.1541	30.12		
3.90_121.0323m/z	<ur>kunknown></ur>	121.0323	1	3.90	0.12		1	0.218	1.2	Model	Control				967.6142	23.88		
3.98_128.0715m/z	<unknown></unknown>	128.0715	1	3.98	0.05		1	0.016	2.66	Model	Control				82.4211	75.98		
3.67_163.0664n	163.0664	164.0742	1	3.67	0.21		1	0.0399	1.53	Model	Control				3439.5021	27.60		

Compound 5.77_243.0989m/z:

Compound statistics (TransOmics software)

Compound statistics (EZinfo)

Ezinfo software for compound statistics (PCA) and Orthogonal Projections to Latent Square Discriminant Analysis (OPLS-DA), correlation analysis and compound validation

Orthogonal partial least square discriminant analysis finds a linear regression model by projecting the predicted variables and the observable variables to a new space OPLS-DA (2002) works best with discrete variables in classification and biomarker studies

Assigned: 17 features in 14 KEGG pathways

Procedures of Reconstruction of Signal Flow in the Trans-Omic Network of Acute Insulin Action (< 60 minutes)

Yugi K. et al., Cell Reports 2014, 8(4): 1171-83.